scholarly journals An RNAi-based high-throughput screening assay to identify small molecule inhibitors of hepatitis B virus replication

2017 ◽  
Vol 292 (30) ◽  
pp. 12577-12588 ◽  
Author(s):  
Subhanita Ghosh ◽  
Abhinav Kaushik ◽  
Sachin Khurana ◽  
Aditi Varshney ◽  
Avishek Kumar Singh ◽  
...  
2004 ◽  
Vol 9 (5) ◽  
pp. 391-397 ◽  
Author(s):  
Chongbo Sun ◽  
Yvette Newbatt ◽  
Leon Douglas ◽  
Paul Workman ◽  
Wynne Aherne ◽  
...  

STK15/Aurora2 is a centrosome-associated serine/threonine kinase, the protein levels and kinase activity of which rise during G2 and mitosis. STK15 overexpression induces tumorigenesis and is amplified in various human cancers and tumor cell lines. Thus, STK15 represents an important therapeutic target for small molecule inhibitors that would disrupt its activity and block cell proliferation. The availability of a robust and selective small molecule inhibitor would also provide a useful tool for identification of the potential role of STK15 in cell cycle regulation and tumor development. The authors report the development of a novel, fast, simple microplate assay for STK15 activity suitable for high-throughput screening. In the assay, γ-33P-ATP and STK15 were incubated in a myelin basic protein (MBP)-coated FlashPlate® to generate a scintillation signal. The assay was reproducible, the signal-to-noise ratio was high (11) and the Z′ factor was 0.69. The assay was easily adapted to a robotic system for drug discovery programs targeting STK15. The authors also demonstrate that STK15 is regulated by phosphorylation and the N-amino terminal domain of the protein. Treatment with phosphatase inhibitors (okadaic acid) or deletion of the N-amino terminal domain results in a significant increase in the enzymatic activity.


PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e90766 ◽  
Author(s):  
Nisan Bhattacharyya ◽  
Xin Hu ◽  
Catherine Z. Chen ◽  
Lesley A. Mathews Griner ◽  
Wei Zheng ◽  
...  

2012 ◽  
Vol 17 (6) ◽  
pp. 738-751 ◽  
Author(s):  
Janina Preuss ◽  
Michael Hedrick ◽  
Eduard Sergienko ◽  
Anthony Pinkerton ◽  
Arianna Mangravita-Novo ◽  
...  

Plasmodium falciparum causes severe malaria infections in millions of people every year. The parasite is developing resistance to the most common antimalarial drugs, which creates an urgent need for new therapeutics. A promising and attractive target for antimalarial drug design is the bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (PfGluPho) of P. falciparum, which catalyzes the key step in the parasites’ pentose phosphate pathway. In this study, we describe the development of a high-throughput screening assay to identify small-molecule inhibitors of recombinant PfGluPho. The optimized assay was used to screen three small-molecule compound libraries—namely, LOPAC (Sigma-Aldrich, 1280 compounds), Spectrum (MicroSource Discovery Systems, 1969 compounds), and DIVERSet (ChemBridge, 49 971 compounds). These pilot screens identified 899 compounds that inhibited PfGluPho activity by at least 50%. Selected compounds were further studied to determine IC50 values in an orthogonal assay, the type of inhibition and reversibility, and effects on P. falciparum growth. Screening results and follow-up studies for selected PfGluPho inhibitors are presented. Our high-throughput screening assay may provide the basis to identify novel and urgently needed antimalarial drugs.


2020 ◽  
Vol 6 (10) ◽  
pp. 2783-2799
Author(s):  
Priya Luthra ◽  
Manu Anantpadma ◽  
Sampriti De ◽  
Julien Sourimant ◽  
Robert A. Davey ◽  
...  

2013 ◽  
Vol 999 (999) ◽  
pp. 1-7
Author(s):  
Chang-An Geng ◽  
Li-Jun Wang ◽  
Rui-Hua Guo ◽  
Ji-Jun Chen

2011 ◽  
Vol 413 (2) ◽  
pp. 90-96 ◽  
Author(s):  
Kenneth Segers ◽  
Hugo Klaassen ◽  
Anastasios Economou ◽  
Patrick Chaltin ◽  
Jozef Anné

Sign in / Sign up

Export Citation Format

Share Document