scholarly journals A Common Cross-species Function for the Double Epidermal Growth Factor-like Modules of the Highly DivergentPlasmodiumSurface Proteins MSP-1 and MSP-8

2004 ◽  
Vol 279 (19) ◽  
pp. 20147-20153 ◽  
Author(s):  
Damien R. Drew ◽  
Rebecca A. O'Donnell ◽  
Brian J. Smith ◽  
Brendan S. Crabb

An understanding of structural and functional constraints on the C-terminal double epidermal growth factor (EGF)-like modules of merozoite surface protein (MSP)-1 and related proteins is of importance to the development of these molecules as malaria vaccines and drug targets. Using allelic replacement, we show thatPlasmodium falciparumparasites can invade erythrocytes and grow efficiently in the absence of an MSP-1 protein with authentic MSP-1 EGF domains. In this mutant parasite line, the MSP-1 EGFs were replaced by the corresponding double EGF module fromP. bergheiMSP-8, the sequence of which shares only low identity with its MSP-1 counterpart. Hence, the C-terminal EGF domains of at least somePlasmodiumsurface proteins appear to perform the same function in asexual blood-stage development. Mapping the surface location of the few residues that are common to these functionally complementary EGF modules revealed the presence of a highly conserved pocket of potential functional significance. In contrast to MSP-8, an even more divergent double EGF module, that from the sexual stage protein PbS25, was not capable of complementing MSP-1 EGF function. More surprisingly, two chimeric double EGF modules comprising hybrids of the EGF domains fromP. falciparumandP. chabaudiMSP-1 were also not capable of replacing theP. falciparumMSP-1 EGF module. Together, these data suggest that although the MSP-1 EGFs can accommodate extensive sequence diversity, there appear to be constraints that may restrict the simple accumulation of point mutations in the face of immune pressure in the field.

2000 ◽  
Vol 68 (11) ◽  
pp. 6189-6195 ◽  
Author(s):  
James M. Burns ◽  
Carla C. Belk ◽  
Patricia D. Dunn

ABSTRACT Using sera from mice immunized and protected againstPlasmodium yoelii malaria, we identified a novel blood-stage antigen gene, pypag-2. The 2.1-kbpypag-2 cDNA contains a single open reading frame that encodes a 409-amino-acid protein with a predicted molecular mass of 46.8 kDa. Unlike many characterized plasmodial antigens, blocks of tandemly repeated amino acids are lacking in the pypAg-2 protein sequence. Recombinant pypAg-2, comprising the full-length protein minus the predicted N-terminal signal and C-terminal anchor sequences, was produced and used to raise a high-titer polyclonal rabbit antiserum. This antiserum was used to identify and characterize the native protein through immunoblotting, immunoprecipitation and immunofluorescence assays. Consistent with the presence of a glycosylphosphatidylinositol anchor, pypAg-2 fractionated with the detergent phase of Triton X-114-solubilized proteins and could be metabolically labeled with [3H]palmitic acid. By immunofluorescence, pypAg-2 expression was localized to both the trophozoite and merozoite membranes. Similar to Plasmodium falciparum merozoite surface protein 1, pypAg-2 contains two C-terminal epidermal growth factor (EGF)-like domains. Most importantly, immunization with recombinant pypAg-2 protected mice against lethal P. yoeliimalaria. Thus, pypAg-2 is a target of protective immune responses and represents a novel addition to the family of merozoite surface proteins that contain one or more EGF-like domains.


2008 ◽  
Vol 7 (12) ◽  
pp. 2123-2132 ◽  
Author(s):  
Madhusudan Kadekoppala ◽  
Rebecca A. O'Donnell ◽  
Munira Grainger ◽  
Brendan S. Crabb ◽  
Anthony A. Holder

ABSTRACT Merozoite surface proteins have been implicated in the initial attachment to the host red blood cell membrane that begins the process of invasion, an important step in the life cycle of the malaria parasite. In Plasmodium falciparum, merozoite surface proteins include several glycosylphosphatidyl inositol-anchored proteins and peripheral proteins attached to the membrane through protein-protein interactions. The most abundant of these proteins is the merozoite surface protein 1 (MSP1) complex, encoded by at least three genes: msp1, msp6, and msp7. The msp7 gene is part of a six-member multigene family in Plasmodium falciparum. We have disrupted msp7 in the Plasmodium falciparum D10 parasite, as confirmed by Southern hybridization. Immunoblot and indirect immunofluorescence analyses confirmed the MSP7 null phenotype of D10ΔMSP7 parasites. The synthesis, distribution, and processing of MSP1 were not affected in this parasite line. The level of expression and cellular distribution of the proteins MSP1, MSP3, MSP6, MSP9, and SERA5 remained comparable to those for the parental line. Furthermore, no significant change in the expression of MSP7-related proteins, except for that of MSRP5, was detected at the transcriptional level. The lack of MSP7 was not lethal at the asexual blood stage, but it did impair invasion of erythrocytes by merozoites to a significant degree. Despite this reduction in efficiency, D10ΔMSP7 parasites did not show any obvious preference for alternate pathways of invasion.


Sign in / Sign up

Export Citation Format

Share Document