merozoite surface protein 1
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 25)

H-INDEX

48
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Elizangela Farias ◽  
Maele Jordão ◽  
Ricardo Avila ◽  
Mirian Fagundes ◽  
Paulo Feuser ◽  
...  

Abstract Background: Relapses of Plasmodium vivax (P. vivax) infections are major causes of malaria morbidity, and tools for distinguishing relapses from reinfections are needed in malaria endemic areas. Methods: Herein, a panel of plasmas of 72 P. vivax-infected pregnant women, of whom 31 had had at least a recurrence of P. vivax infection, was used in a serology for IgM and IgG against 6 P. vivax-merozoite surface protein-1 (P. vivax-MSP1-Block 2) haplotype-specific peptides, in order to identify re-expositions to same haplotypes in the recurrences during the pregnancy. In parallel, we used the amplicon deep sequencing (ADS) with P. vivax-MSP1-Block 2 amplicons of the in eight blood samples of non-pregnant P. vivax-infected patients to identify multi or monoclonal infections based on MSP1-Block-2 haplotypes, and to quantify the reads of different haplotypes between those with multiclonal infections. We synthetized a new panel of overlapping peptides mapping each one of the six P. vivax-MSP1-Block 2 haplotypes and we validated with new IgM and IgG serology. Results: Most pregnant women presented IgM that recognized more than one peptide, thus indicating multiple infections by P. vivax-MSP1-Block 2 haplotypes. The same IgM anti-peptides remained in several women in the recurrent episodes most likely indicates re-exposure to the same haplotype of MSP1 Block 2. The IgG reactivity the IgM to IgG switch were low. The ADS using next-generation sequencing (NGS) identified multi- and monoinfection by P. vivax-MSP1-Block 2 haplotypes. Of eight patients, two of them had had the first P. vivax-infection. Monoinfections with P. vivax-MSP1-Block 2 haplotypes were observed in two prime-infected patients and three of patients with previous malaria. In all P. vivax-MSP1-Block 2 haplotype-monoinfected patients, the reactivity of IgM was observed only against overlapped peptides of the same haplotype detected in ADS, while for IgG, no reactivity was observed for any of the peptides of the same haplotype or the others.We were able to identify multiclonal infections through three haplotypes of P. vivax MSP1 Block 2 in three remaining patients, among which, there was always one majority haplotype that predominated with more of 95% of high-quality reads. The levels of haplotype-specific IgM in the serology correlated with the read ratios of each haplotype, but IgG levels not, including in one of the multiclonal infections, a minority haplotype was recognized with higher levels of IgG than that of the majority one. Conclusion: Our findings suggest that the combination of ADS and serology for P. vivax-MSP1-Block 2 haplotypes may be used as a new tool for distinguishing reinfections from relapses in malaria.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Rungniran Sugaram ◽  
Patcharida Boondej ◽  
Suttipat Srisutham ◽  
Chanon Kunasol ◽  
Watcharee Pagornrat ◽  
...  

Abstract Background Thailand is committed to eliminating malaria by 2024. From 2013 to 2020, the total number of malaria cases have decreased, from 37,741 to 4474 (an 88.1% reduction). However, infections with Plasmodium knowlesi, a monkey malarial pathogen that can also infect humans, have been increasingly observed. This study focused on the molecular analysis of P. knowlesi parasites causing malaria in Thailand. Methods Under Thailand’s integrated Drug Efficacy Surveillance (iDES), which includes drug-resistance monitoring as part of routine case-based surveillance and responses, specimens were collected from malaria patients (n = 966) between 2018 and 2020. Thirty-one mono P. knowlesi infections (3.1%), most of which were from eastern and southern Thailand, were observed and confirmed by nested PCR assay and DNA sequencing. To evaluate whether these pathogens were from different lineages, cluster analysis based on seven microsatellite genotyping markers and the merozoite surface protein 1 (pkmsp1) gene was carried out. The P. knowlesi pyrimethamine resistance gene dihydrofolate reductase (pkdhfr) was sequenced and homology modelling was constructed. Results The results of analysing the seven microsatellite markers and pkmsp1 sequence demonstrated that P. knowlesi parasites from eastern Thailand were of the same lineage as those isolated in Cambodia, while the parasites causing malaria in southern Thailand were the same lineage as those isolated from Malaysia. The sequencing results for the pkdhfr genes indicated the presence of two mutations, Arg34Leu and a deletion at position 105. On analysis with homology modelling, the two mutations were not associated with anti-malarial drug resistance. Conclusions This report compared the genetic populations of P. knowlesi parasites in Thailand from 2018 to 2020 and have shown similar lineages as those isolated in Cambodia and Malaysia of P. knowlesi infection in Thailand and demonstrated that the P. knowlesi parasites were of the same lineages as those isolated in Cambodia and Malaysia. The parasites were also shown to be sensitive to pyrimethamine.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qinwen Xu ◽  
Sihong Liu ◽  
Kokouvi Kassegne ◽  
Bo Yang ◽  
Jiachen Lu ◽  
...  

Abstract Background Merozoite surface protein 1 (MSP1) plays an essential role in erythrocyte invasion by malaria parasites. The C-terminal 19-kDa region of MSP1 has long been considered one of the major candidate antigens for a malaria blood-stage vaccine against Plasmodium falciparum. However, there is limited information on the C-terminal 19-kDa region of Plasmodium ovale MSP1 (PoMSP119). This study aims to analyze the genetic diversity and immunogenicity of PoMSP119. Methods A total of 37 clinical Plasmodium ovale isolates including Plasmodium ovale curtisi and Plasmodium ovale wallikeri imported from Africa into China and collected during the period 2012–2016 were used. Genomic DNA was used to amplify P. ovale curtisi (poc) msp119 (pocmsp119) and P. ovale wallikeri (pow) msp119 (powmsp119) genes by polymerase chain reaction. The genetic diversity of pomsp119 was analyzed using the GeneDoc version 6 programs. Recombinant PoMSP119 (rPoMSP119)-glutathione S-transferase (GST) proteins were expressed in an Escherichia coli expression system and analyzed by western blot. Immune responses in BALB/c mice immunized with rPoMSP119-GST were determined using enzyme-linked immunosorbent assay. In addition, antigen-specific T cell responses were assessed by lymphocyte proliferation assays. A total of 49 serum samples from healthy individuals and individuals infected with P. ovale were used for the evaluation of natural immune responses by using protein microarrays. Results Sequences of pomsp119 were found to be thoroughly conserved in all the clinical isolates. rPoMSP119 proteins were efficiently expressed and purified as ~ 37-kDa proteins. High antibody responses in mice immunized with rPoMSP119-GST were observed. rPoMSP119-GST induced high avidity indexes, with an average of 92.57% and 85.32% for rPocMSP119 and rPowMSP119, respectively. Cross-reactivity between rPocMSP119 and rPowMSP119 was observed. Cellular immune responses to rPocMSP119 (69.51%) and rPowMSP119 (52.17%) induced in rPocMSP119- and rPowMSP119-immunized mice were found in the splenocyte proliferation assays. The sensitivity and specificity of rPoMSP119-GST proteins for the detection of natural immune responses in patients infected with P. ovale were 89.96% and 75%, respectively. Conclusions This study revealed highly conserved gene sequences of pomsp119. In addition, naturally acquired humoral immune responses against rPoMSP1 were observed in P. ovale infections, and high immunogenicity of rPoMSP119 in mice was also identified. These instructive findings should encourage further testing of PoMSP119 for rational vaccine design. Graphical abstract


2021 ◽  
Author(s):  
S Jake Gonzales ◽  
Kathleen N Clarke ◽  
Gayani Batugedara ◽  
Ashley E Braddom ◽  
Rolando Garza ◽  
...  

Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against P. falciparum develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, merozoite surface protein 1 (MSP1), in individuals from a region in Uganda with high P. falciparum transmission. Our results showed that MSP1-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ MSP1-specific classical MBCs. In contrast, anti-MSP1 plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against MSP1 and whole merozoites, with broadening of the response against non-3D7 strains in adults. The antibodies encoded by MSP1-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable MSP1 protein. Proteomics analysis of MSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to MSP1-specific MBCs, anti-MSP1 IgGs had relatively high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the MSP1-specific humoral immune response with cumulative P. falciparum exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of MSP1 variants by the plasma IgG repertoire.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Temesgen File ◽  
Tsegaye Chekol ◽  
Gezahegn Solomon ◽  
Hunduma Dinka ◽  
Lemu Golassa

Abstract Background One of the major challenges in developing an effective vaccine against asexual stages of Plasmodium falciparum is genetic polymorphism within parasite population. Understanding the genetic polymorphism like block 2 region of merozoite surface protein-1 (msp-1) gene of P. falciparum enlighten mechanisms underlining disease pathology, identification of the parasite clone profile from the isolates, transmission intensity and potential deficiencies of the ongoing malaria control and elimination efforts in the locality. Detailed understanding of local genetic polymorphism is an input to pave the way for better management, control and elimination of malaria. The aim of this study was to detect the most frequent allelic variant of the msp-1 gene of P. falciparum clinical isolates from selected health facilities in Adama town and its surroundings, Oromia, Ethiopia. Methods One hundred thirty-nine clinical isolates were successfully amplified for msp-1 gene using specific primers. Nested PCR amplification was conducted targeting K1, MAD20, and R033 alleles followed by gel electrophoresis for fragment analysis. Based on the detection of a PCR fragment, infections were classified as monoclonal or multiple infections. Results 19 different size polymorphism of msp-1 gene were identified in the study, with 67(48%) MAD20, 18 (13%) K-1 and 18 (13%) RO33 allelic family. Whereas, the multiple infections were 21(15%), 8 (5.8%), 4(2.9%), 3(2.2%) for MAD20 + K-1, MAD20 + RO33, K-1 + RO33, and MAD20 + K-1, RO33, respectively. The overall Multiplicity of infection (MOI) was 1.3 and the expected heterozygosity (He) was 0.39 indicating slightly low falciparum malaria transmission. Conclusion The status of msp-1 allele size polymorphism, MOI and He observed in the study revealed the presence of slightly low genetic diversity of P. falciparum clinical isolates. However, highly frequent MAD20 allelic variant was detected from clinical isolates in the study area. Moreover, the driving force that led to high predominance of MAD20 allelic variant revealed in such malaria declining region demands further research.


2021 ◽  
Author(s):  
Qinwen Xu ◽  
Sihong Liu ◽  
Kokouvi Kassegne ◽  
Bo Yang ◽  
Jiachen Lu ◽  
...  

Abstract Background Merozoite surface protein 1 (MSP1) plays an essential role in erythrocyte invasion by malaria parasites. The C-terminal 19-kDa of MSP1 has long been considered as one of the major candidate antigens for malaria blood-stage vaccine in Plasmodium falciparum. However, there are limited information on the C-terminal 19-kDa region of Plasmodium ovale merozoite surface protein 1 (PoMSP119). This study, therefore, aims to analyse genetic diversity and immunogenicity of PoMSP119. Methods A total of 37 clinical P. ovale isolates including P. ovale curtisi (Poc) and P. ovale wallikeri (Pow) imported from Africa to China and collected between 2012 and 2016 were used. Genomic DNA were used to amplify pocmsp119 and powmsp119 genes by polymerase chain reaction (PCR). Genetic diversity of pomsp119 was analyzed using the MegAlign and GeneDoc v.6 programs. Recombinant PoMSP119-GST proteins were expressed in an Escherichia coli expression system and analyzed by Western blot. Immune responses in BALB/c mice immunized with rPoMSP119-GST were determined using enzyme-linked immunosorbent assays (ELISA). In addition, antigen-specific T-cell responses were performed by lymphocyte proliferation assays. A total of 49 serum samples from P. ovale infections and healthy people were used to evaluate natural immune responses through protein microarray assays. Results Sequences of pomsp119 were found thoroughly conserved in all clinical isolates. Recombinant PoMSP119 proteins were efficiently expressed and purified as ~ 37 kDa proteins. High antibody responses in immunized mice with rPoMSP119-GST were observed. The rPoMSP119-GST induced high avidity indexes with an average of 92.57% and 85.32% for Poc and Pow, respectively. Cross-reactivity between rPocMSP119 and rPowMSP119 was observed. Cellular immune responses to rPocMSP119 (69.51%) and rPowMSP119 (52.17%) induced in rPocMSP119- and rPowMSP119-immunized mice were found during splenocyte proliferation assays. The sensitivity and specificity of rPoMSP119-GST proteins for natural immune responses detection in patients infected with P. ovale were 89.96% and 75%, respectively. Conclusions This study revealed high conservation in sequences of pomsp119 and high immunogenicity of rPoMSP119. The rPoMSP119 proteins detected humoral immune responses in patients with P. ovale infection. Such informative results advance our understanding of natural immunity to P. ovale infection and contribute to the knowledge base for the development of a PoMSP119-based vaccine.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 916
Author(s):  
Haung Naw ◽  
Jung-Mi Kang ◽  
Mya Moe ◽  
Jinyoung Lee ◽  
Hương Giang Lê ◽  
...  

Despite a significant decline in the incidence of malaria in Myanmar recently, malaria is still an important public health concern in the country. Although Plasmodium falciparum is associated with the highest incidence of malaria in Myanmar, the proportion of P. vivax cases has shown a gradual increase in recent years. The genetic diversity of P. vivax merozoite surface protein-1 block 5-6 (pvmsp-1 ICB 5-6) in the P. vivax population of Myanmar was analyzed to obtain a comprehensive insight into its genetic heterogeneity and evolutionary history. High levels of genetic diversity of pvmsp-1 ICB 5-6 were identified in the P. vivax isolates collected from Myanmar between 2013 and 2015. Thirty-nine distinct haplotypes of pvmsp-1 ICB 5-6 (13 for Sal I type, 20 for recombinant type, and 6 for Belem type) were found at the amino acid level. Comparative analyses of the genetic diversity of pvmsp-1 ICB 5-6 sequences in the recent (2013–2015) and the past (2004) P. vivax populations in Myanmar revealed genetic expansion of the pvmsp-1 ICB 5-6 in recent years, albeit with a declined incidence. The recent increase in the genetic heterogeneity of Myanmar pvmsp-1 ICB 5-6 is attributed to a combination of factors, including accumulated mutations and recombination. These results suggest that the size of the P. vivax population in Myanmar is sufficient to enable the generation and maintenance of genetic diversity, warranting continuous molecular surveillance of genetic variation in Myanmar P. vivax.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg0465
Author(s):  
Patricia M. Dijkman ◽  
Tanja Marzluf ◽  
Yingyi Zhang ◽  
Shih-Ying Scott Chang ◽  
Dominic Helm ◽  
...  

The merozoite surface protein 1 (MSP-1) is the most abundant protein on the surface of the erythrocyte-invading Plasmodium merozoite, the causative agent of malaria. MSP-1 is essential for merozoite formation, entry into and escape from erythrocytes, and is a promising vaccine candidate. Here, we present monomeric and dimeric structures of full-length MSP-1. MSP-1 adopts an unusual fold with a large central cavity. Its fold includes several coiled-coils and shows structural homology to proteins associated with membrane and cytoskeleton interactions. MSP-1 formed dimers through these domains in a concentration-dependent manner. Dimerization is affected by the presence of the erythrocyte cytoskeleton protein spectrin, which may compete for the dimerization interface. Our work provides structural insights into the possible mode of interaction of MSP-1 with erythrocytes and establishes a framework for future investigations into the role of MSP-1 in Plasmodium infection and immunity.


Sign in / Sign up

Export Citation Format

Share Document