scholarly journals Differential Promotion of Glutamate Transporter Expression and Function by Glucocorticoids in Astrocytes from Various Brain Regions

2005 ◽  
Vol 280 (41) ◽  
pp. 34924-34932 ◽  
Author(s):  
Jürgen Zschocke ◽  
Nadhim Bayatti ◽  
Albrecht M. Clement ◽  
Heidrun Witan ◽  
Maciej Figiel ◽  
...  
Glia ◽  
2004 ◽  
Vol 45 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Nicholas J. Maragakis ◽  
Joerg Dietrich ◽  
Victor Wong ◽  
Haipeng Xue ◽  
Margot Mayer-Proschel ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Alexandra E. Schreiner ◽  
Eric Berlinger ◽  
Julia Langer ◽  
Karl W. Kafitz ◽  
Christine R. Rose

Astrocytes express the sodium-dependent glutamate transporters GLAST and GLT-1, which are critical to maintain low extracellular glutamate concentrations. Here, we analyzed changes in their expression and function following a mechanical lesion in the CA1 area of organotypic hippocampal slices. 6-7 days after lesion, a glial scar had formed along the injury site, containing strongly activated astrocytes with increased GFAP and S100β immunoreactivity, enlarged somata, and reduced capability for uptake of SR101. Astrocytes in the scar’s periphery were swollen as well, but showed only moderate upregulation of GFAP and S100β and efficiently took up SR101. In the scar, clusters of GLT-1 and GLAST immunoreactivity colocalized with GFAP-positive fibers. Apart from these, GLT-1 immunoreactivity declined with increasing distance from the scar, whereas GLAST expression appeared largely uniform. Sodium imaging in reactive astrocytes indicated that glutamate uptake was strongly reduced in the scar but maintained in the periphery. Our results thus show that moderately reactive astrocytes in the lesion periphery maintain overall glutamate transporter expression and function. Strongly reactive astrocytes in the scar, however, display clusters of GLAST and GLT-1 immunoreactivity together with reduced glutamate transport activity. This reduction might contribute to increased extracellular glutamate concentrations and promote excitotoxic cell damage at the lesion site.


2013 ◽  
Vol 62 (7) ◽  
pp. 973-981 ◽  
Author(s):  
Geraldine T. Petr ◽  
Ekaterina Bakradze ◽  
Natalie M. Frederick ◽  
Jianlin Wang ◽  
Wencke Armsen ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Peng Chen ◽  
Hongyang Jing ◽  
Mingtao Xiong ◽  
Qian Zhang ◽  
Dong Lin ◽  
...  

AbstractThe genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1–LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.


Author(s):  
Anna J. Moyer ◽  
Roger H. Reeves

Is intellectual disability a treatable feature of persons with Down syndrome? Researchers have made tremendous progress in the last 30 years, from creating the first mouse model of Down syndrome to completing the first major clinical trial for cognitive impairment in people with Down syndrome. Until recently, normalizing brain development and function seemed too lofty a goal, and indeed, even proposing a candidate therapy requires answering a number of difficult questions. How does trisomy 21, a molecular diagnosis, cause the clinical phenotypes of Down syndrome? When, where, and how do trisomic genes act to disrupt normal development and which genes are involved with which outcomes? Which brain regions and behaviors are most impaired? Is there an early developmental window of time during which treatments are most effective? This article discusses how animal models such as laboratory mice can be used to understand intellectual disability and to develop new treatments for cognitive impairment.


Sign in / Sign up

Export Citation Format

Share Document