scholarly journals Sites of Intra- and Intermolecular Cross-linking of the N-terminal Extension of Troponin I in Human Cardiac Whole Troponin Complex

2009 ◽  
Vol 284 (21) ◽  
pp. 14258-14266 ◽  
Author(s):  
Chad M. Warren ◽  
Tomoyoshi Kobayashi ◽  
R. John Solaro
2019 ◽  
Vol 65 (7) ◽  
pp. 882-892 ◽  
Author(s):  
Alexandra V Vylegzhanina ◽  
Alexander E Kogan ◽  
Ivan A Katrukha ◽  
Ekaterina V Koshkina ◽  
Anastasia V Bereznikova ◽  
...  

AbstractBACKGROUNDThe measurement of cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) is widely used for the diagnosis of acute myocardial infarction (AMI). However, there are conflicting data regarding what forms of cTnI and cTnT are present in the blood of AMI patients. We investigated cTnI and cTnT as components of troponin complexes in the blood of AMI patients.METHODSGel filtration techniques, sandwich fluoroimmunoassays, and Western blotting were used.RESULTSPlasma samples from patients with AMI contained the following troponin complexes: (a) a cTnI-cTnT-TnC complex (ITC) composed of full-size cTnT of 37 kDa or its 29-kDa fragment and full-size cTnI of 29 kDa or its 27-kDa fragments; (b) ITC with lower molecular weight (LMW-ITC) in which cTnT was truncated to the 14-kDa C-terminal fragments; and (c) a binary cTnI-cTnC complex composed of truncated cTnI of approximately 14 kDa. During the progression of the disease, the amount of ITC in AMI samples decreased, whereas the amounts of LMW-ITC and short 16- to 20-kDa cTnT central fragments increased. Almost all full-size cTnT and a 29-kDa cTnT fragment in AMI plasma samples were the components of ITC. No free full-size cTnT was found in AMI plasma samples. Only 16- to 27-kDa central fragments of cTnT were present in a free form in patient blood.CONCLUSIONSA ternary troponin complex exists in 2 forms in the blood of patients with AMI: full-size ITC and LMW-ITC. The binary cTnI-cTnC complex and free cTnT fragments are also present in patient blood.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Michelle S. Parvatiyar ◽  
Jose Renato Pinto ◽  
David Dweck ◽  
James D. Potter

Mutations in sarcomeric proteins have recently been established as heritable causes of Restrictive Cardiomyopathy (RCM). RCM is clinically characterized as a defect in cardiac diastolic function, such as, impaired ventricular relaxation, reduced diastolic volume and increased end-diastolic pressure. To date, mutations have been identified in the cardiac genes for desmin,α-actin, troponin I and troponin T. Functional studies in skinned muscle fibers reconstituted with troponin mutants have established phenotypes consistent with the clinical findings which include an increase in myofilamentCa2+sensitivity and basal force. Moreover, when RCM mutants are incorporated into reconstituted myofilaments, the ability to inhibit the ATPase activity is reduced. A majority of the mutations cluster in specific regions of cardiac troponin and appear to be mutational “hot spots”. This paper highlights the functional and clinical characteristics of RCM linked mutations within the troponin complex.


Biochemistry ◽  
2002 ◽  
Vol 41 (42) ◽  
pp. 12891-12898 ◽  
Author(s):  
Yin Luo ◽  
Bing Li ◽  
Guang Yang ◽  
John Gergely ◽  
Terence Tao

Sign in / Sign up

Export Citation Format

Share Document