scholarly journals Regulation of eukaryotic translation initiation factor 6 dynamics through multisite phosphorylation by GSK3

2020 ◽  
Vol 295 (36) ◽  
pp. 12796-12813
Author(s):  
Courtney F. Jungers ◽  
Jonah M. Elliff ◽  
Daniela S. Masson-Meyers ◽  
Christopher J. Phiel ◽  
Sofia Origanti

Eukaryotic translation initiation factor 6 (eIF6) is essential for the synthesis of 60S ribosomal subunits and for regulating the association of 60S and 40S subunits. A mechanistic understanding of how eIF6 modulates translation in response to stress, specifically starvation-induced stress, is lacking. We here show a novel mode of eIF6 regulation by glycogen synthase kinase 3 (GSK3) that is predominantly active in response to serum starvation. Both GSK3α and GSK3β phosphorylate human eIF6. Multiple residues in the C terminus of eIF6 are phosphorylated by GSK3 in a sequential manner. In response to serum starvation, eIF6 accumulates in the cytoplasm, and this altered localization depends on phosphorylation by GSK3. Disruption of eIF6 phosphorylation exacerbates the translation inhibitory response to serum starvation and stalls cell growth. These results suggest that eIF6 regulation by GSK3 contributes to the attenuation of global protein synthesis that is critical for adaptation to starvation-induced stress.

2010 ◽  
Vol 30 (8) ◽  
pp. 2006-2016 ◽  
Author(s):  
Karen A. Wehner ◽  
Sylvia Schütz ◽  
Peter Sarnow

ABSTRACT Cells possess mechanisms that permit survival and recovery from stress, several of which regulate the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). We identified the human OGFOD1 protein as a novel stress granule component that regulates the phosphorylation of eIF2α and the resumption of translation in cells recovering from arsenite-induced stress. Coimmunoprecipitation studies revealed that OGFOD1 associates with a small subset of stress granule proteins (G3BP1, USP10, Caprin1, and YB-1) and the ribosome in both unstressed and stressed cells. Overexpression of OGFOD1 led to increased abundance of phosphorylated eIF2α, both in unstressed cells and in cells exposed to arsenite-induced stress, and to accelerated apoptosis during stress. Conversely, knockdown of OGFOD1 resulted in smaller amounts of phosphorylated eIF2α and a faster accumulation of polyribosomes in cells recovering from stress. Finally, OGFOD1 interacted with both eIF2α and the eIF2α kinase heme-regulated inhibitor (HRI), which was identified as a novel stress granule resident. These findings argue that OGFOD1 plays important proapoptotic roles in the regulation of translation and HRI-mediated phosphorylation of eIF2α in cells subjected to arsenite-induced stress.


Sign in / Sign up

Export Citation Format

Share Document