scholarly journals Lysines in the lyase active site of DNA polymerase β destabilize nonspecific DNA binding, facilitating searching and DNA gap recognition

2020 ◽  
Vol 295 (34) ◽  
pp. 12181-12187 ◽  
Author(s):  
Michael J. Howard ◽  
Julie K. Horton ◽  
Ming-Lang Zhao ◽  
Samuel H. Wilson

DNA polymerase (pol) β catalyzes two reactions at DNA gaps generated during base excision repair, gap-filling DNA synthesis and lyase-dependent 5´-end deoxyribose phosphate removal. The lyase domain of pol β has been proposed to function in DNA gap recognition and to facilitate DNA scanning during substrate search. However, the mechanisms and molecular interactions used by pol β for substrate search and recognition are not clear. To provide insight into this process, a comparison was made of the DNA binding affinities of WT pol β, pol λ, and pol μ, and several variants of pol β, for 1-nt-gap-containing and undamaged DNA. Surprisingly, this analysis revealed that mutation of three lysine residues in the lyase active site of pol β, 35, 68, and 72, to alanine (pol β KΔ3A) increased the binding affinity for nonspecific DNA ∼11-fold compared with that of the WT. WT pol μ, lacking homologous lysines, displayed nonspecific DNA binding behavior similar to that of pol β KΔ3A, in line with previous data demonstrating both enzymes were deficient in processive searching. In fluorescent microscopy experiments using mouse fibroblasts deficient in PARP-1, the ability of pol β KΔ3A to localize to sites of laser-induced DNA damage was strongly decreased compared with that of WT pol β. These data suggest that the three lysines in the lyase active site destabilize pol β when bound to DNA nonspecifically, promoting DNA scanning and providing binding specificity for gapped DNA.

2005 ◽  
Vol 389 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Ekaterina SMIRNOVA ◽  
Magali TOUEILLE ◽  
Enni MARKKANEN ◽  
Ulrich HÜBSCHER

The human checkpoint sensor and alternative clamp Rad9–Rad1–Hus1 can interact with and specifically stimulate DNA ligase I. The very recently described interactions of Rad9–Rad1–Hus1 with MutY DNA glycosylase, DNA polymerase β and Flap endonuclease 1 now complete our view that the long-patch base excision machinery is an important target of the Rad9–Rad1–Hus1 complex, thus enhancing the quality control of DNA.


DNA Repair ◽  
2021 ◽  
Vol 99 ◽  
pp. 103050
Author(s):  
Beverly A. Baptiste ◽  
Stephanie L. Baringer ◽  
Tomasz Kulikowicz ◽  
Joshua A. Sommers ◽  
Deborah L. Croteau ◽  
...  

2010 ◽  
Vol 67 (21) ◽  
pp. 3633-3647 ◽  
Author(s):  
Samuel H. Wilson ◽  
William A. Beard ◽  
David D. Shock ◽  
Vinod K. Batra ◽  
Nisha A. Cavanaugh ◽  
...  

Biochemistry ◽  
2005 ◽  
Vol 44 (31) ◽  
pp. 10613-10619 ◽  
Author(s):  
Jason L. Parsons ◽  
Irina I. Dianova ◽  
Sarah L. Allinson ◽  
Grigory L. Dianov

2010 ◽  
Vol 39 (8) ◽  
pp. 3156-3165 ◽  
Author(s):  
De-Sheng Pei ◽  
Xiao-Jie Yang ◽  
Wei Liu ◽  
Jeroen E. J. Guikema ◽  
Carol E. Schrader ◽  
...  

2005 ◽  
Vol 201 (4) ◽  
pp. 637-645 ◽  
Author(s):  
Teresa M. Wilson ◽  
Alexandra Vaisman ◽  
Stella A. Martomo ◽  
Patsa Sullivan ◽  
Li Lan ◽  
...  

Activation-induced cytidine deaminase deaminates cytosine to uracil (dU) in DNA, which leads to mutations at C:G basepairs in immunoglobulin genes during somatic hypermutation. The mechanism that generates mutations at A:T basepairs, however, remains unclear. It appears to require the MSH2–MSH6 mismatch repair heterodimer and DNA polymerase (pol) η, as mutations of A:T are decreased in mice and humans lacking these proteins. Here, we demonstrate that these proteins interact physically and functionally. First, we show that MSH2–MSH6 binds to a U:G mismatch but not to other DNA intermediates produced during base excision repair of dUs, including an abasic site and a deoxyribose phosphate group. Second, MSH2 binds to pol η in solution, and endogenous MSH2 associates with the pol in cell extracts. Third, MSH2–MSH6 stimulates the catalytic activity of pol η in vitro. These observations suggest that the interaction between MSH2–MSH6 and DNA pol η stimulates synthesis of mutations at bases located downstream of the initial dU lesion, including A:T pairs.


2000 ◽  
Vol 275 (3) ◽  
pp. 2211-2218 ◽  
Author(s):  
Julie K. Horton ◽  
Rajendra Prasad ◽  
Esther Hou ◽  
Samuel H. Wilson

2004 ◽  
Vol 279 (18) ◽  
pp. 18425-18433 ◽  
Author(s):  
Julian J. Raffoul ◽  
Diane C. Cabelof ◽  
Jun Nakamura ◽  
Lisiane B. Meira ◽  
Errol C. Friedberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document