scholarly journals Receptor-independent modulation of cAMP-dependent protein kinase and protein phosphatase signaling in cardiac myocytes by oxidizing agents

2020 ◽  
Vol 295 (45) ◽  
pp. 15342-15365
Author(s):  
Simon Diering ◽  
Konstantina Stathopoulou ◽  
Mara Goetz ◽  
Laura Rathjens ◽  
Sönke Harder ◽  
...  

The contraction and relaxation of the heart is controlled by stimulation of the β1-adrenoreceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation is counteracted by the main cardiac protein phosphatases, PP2A and PP1. Both kinase and phosphatases are sensitive to intramolecular disulfide formation in their catalytic subunits that inhibits their activity. Additionally, intermolecular disulfide formation between PKA type I regulatory subunits (PKA-RI) has been described to enhance PKA's affinity for protein kinase A anchoring proteins, which alters its subcellular distribution. Nitroxyl donors have been shown to affect contractility and relaxation, but the mechanistic basis for this effect is unclear. The present study investigates the impact of several nitroxyl donors and the thiol-oxidizing agent diamide on cardiac myocyte protein phosphorylation and oxidation. Although all tested compounds equally induced intermolecular disulfide formation in PKA-RI, only 1-nitrosocyclohexalycetate (NCA) and diamide induced reproducible protein phosphorylation. Phosphorylation occurred independently of β1-AR activation, but was abolished after pharmacological PKA inhibition and thus potentially attributable to increased PKA activity. NCA treatment of cardiac myocytes induced translocation of PKA and phosphatases to the myofilament compartment as shown by fractionation, immunofluorescence, and proximity ligation assays. Assessment of kinase and phosphatase activity within the myofilament fraction of cardiac myocytes after exposure to NCA revealed activation of PKA and inhibition of phosphatase activity thus explaining the increase in phosphorylation. The data suggest that the NCA-mediated effect on cardiac myocyte protein phosphorylation orchestrates alterations in the kinase/phosphatase balance.

2001 ◽  
Vol 280 (6) ◽  
pp. L1282-L1289 ◽  
Author(s):  
Stephanie E. Porter ◽  
Lori D. Dwyer-Nield ◽  
Alvin M. Malkinson

Cell shape is mediated in part by the actin cytoskeleton and the actin-binding protein vinculin. These proteins in turn are regulated by protein phosphorylation. We assessed the contribution of cAMP-dependent protein kinase A isozyme I (PKA I) to lung epithelial morphology using the E10/E9 sibling cell lines. PKA I concentration is high in flattened, nontumorigenic E10 cells but low in their round E9 transformants. PKA I activity was lowered in E10 cells by stable transfection with a dominant negative RIα mutant of the PKA I regulatory subunit and was raised in E9 cells by stable transfection with a wild-type Cα catalytic subunit construct. Reciprocal changes in morphology ensued. E10 cells became rounder and grew in colonies, their actin microfilaments were disrupted, and vinculin localization at cell-cell junctions was diminished. The converse occurred in E9 cells on elevating their PKA I content. Demonstration that PKA I is responsible for the dichotomy in these cellular behaviors suggests that manipulating PKA I concentrations in lung cancer would provide useful adjuvant therapy.


2012 ◽  
Vol 102 (3) ◽  
pp. 668a
Author(s):  
Zeineb Haj Slimane ◽  
Jin Zhang ◽  
Wito Richter ◽  
Rodolphe Fischmeister ◽  
Grégoire Vandecasteele

Sign in / Sign up

Export Citation Format

Share Document