scholarly journals Working memory performance in expert and novice interpreters

Interpreting ◽  
2006 ◽  
Vol 8 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Barbara Köpke ◽  
Jean-Luc Nespoulous

Simultaneous interpreting is generally assumed to be particularly demanding with respect to cognitive resources such as attention and working memory, which are thought to gradually increase with professional practice. Experimental data to corroborate this assumption is still rather sparse, however. Here we report an in-depth investigation of working memory capacity among 21 professional interpreters (experts), 18 second-year interpreting students (novices) and two control groups (20 multilinguals and 20 students). Tests involved either short-term retention alone; short-term retention and processing in a recall task with articulatory suppression, a listening span task, and a category and rhyme probe task; or attention alone in a unilingual and bilingual Stroop test. No between-group differences in simple span tasks and the Stroop test were found. Significant group effects were observed in free recall with articulatory suppression, in the category probe task and in the listening span task. The best performance was always produced by the novice interpreters rather than by the experts. These findings are discussed in relation to (a) the novice–expert distinction and the role of working memory in the development of interpreting skills, and (b) the nature of the task and possible strategies involved.

Author(s):  
Mirosław Pawlak ◽  
Adriana Biedroń

Abstract This paper reports the findings of a study that investigated the relationship between phonological short-term memory (PSTM), working memory capacity (WMC), and the level of mastery of L2 grammar. Grammatical mastery was operationalized as the ability to produce and comprehend English passive voice with reference to explicit and implicit (or highly automatized) knowledge. Correlational analysis showed that PSTM was related to implicit productive knowledge while WMC was linked to explicit productive knowledge. However, regression analysis showed that those relationships were weak and mediated by overall mastery of target language grammar, operationalized as final grades in a grammar course.


2021 ◽  
Author(s):  
Alicia Forsberg ◽  
Dominic Guitard ◽  
Eryn J. Adams ◽  
Duangporn Pattanakul ◽  
Nelson Cowan

2020 ◽  
Vol 5 ◽  
pp. 239694152094551
Author(s):  
Seçkin Arslan ◽  
Lucie Broc ◽  
Fabien Mathy

Background and aims Children with developmental language disorder (DLD) often perform below their typically developing peers on verbal memory tasks. However, the picture is less clear on visual memory tasks. Research has generally shown that visual memory can be facilitated by verbal representations, but few studies have been conducted using visual materials that are not easy to verbalize. Therefore, we attempted to construct non-verbalizable stimuli to investigate the impact of working memory capacity. Method and results We manipulated verbalizability in visual span tasks and tested whether minimizing verbalizability could help reduce visual recall performance differences across children with and without developmental language disorder. Visuals that could be easily verbalized or not were selected based on a pretest with non-developmental language disorder young adults. We tested groups of children with developmental language disorder (N = 23) and their typically developing peers (N = 65) using these high and low verbalizable classes of visual stimuli. The memory span of the children with developmental language disorder varied across the different stimulus conditions, but critically, although their storage capacity for visual information was virtually unimpaired, the children with developmental language disorder still had difficulty in recalling verbalizable images with simple drawings. Also, recalling complex (galaxy) images with low verbalizability proved difficult in both groups of children. An item-based analysis on correctly recalled items showed that higher levels of verbalizability enhanced visual recall in the typically developing children to a greater extent than the children with developmental language disorder. Conclusions and clinical implication: We suggest that visual short-term memory in typically developing children might be mediated with verbal encoding to a larger extent than in children with developmental language disorder, thus leading to poorer performance on visual capacity tasks. Our findings cast doubts on the idea that short-term storage impairments are limited to the verbal domain, but they also challenge the idea that visual tasks are essentially visual. Therefore, our findings suggest to clinicians working with children experiencing developmental language difficulties that visual memory deficits may not necessarily be due to reduced non-verbal skills but may be due to the high amount of verbal cues in visual stimuli, from which they do not benefit in comparison to their peers.


1995 ◽  
Vol 15 (1-2) ◽  
pp. 122
Author(s):  
R. Hijman ◽  
H.E. Hulshoff Pol ◽  
W.F.C. Baaré ◽  
J. van der Linden ◽  
R.S. Kahn

2021 ◽  
Vol 33 (5) ◽  
pp. 902-918 ◽  
Author(s):  
Isabel E. Asp ◽  
Viola S. Störmer ◽  
Timothy F. Brady

Abstract Almost all models of visual working memory—the cognitive system that holds visual information in an active state—assume it has a fixed capacity: Some models propose a limit of three to four objects, where others propose there is a fixed pool of resources for each basic visual feature. Recent findings, however, suggest that memory performance is improved for real-world objects. What supports these increases in capacity? Here, we test whether the meaningfulness of a stimulus alone influences working memory capacity while controlling for visual complexity and directly assessing the active component of working memory using EEG. Participants remembered ambiguous stimuli that could either be perceived as a face or as meaningless shapes. Participants had higher performance and increased neural delay activity when the memory display consisted of more meaningful stimuli. Critically, by asking participants whether they perceived the stimuli as a face or not, we also show that these increases in visual working memory capacity and recruitment of additional neural resources are because of the subjective perception of the stimulus and thus cannot be driven by physical properties of the stimulus. Broadly, this suggests that the capacity for active storage in visual working memory is not fixed but that more meaningful stimuli recruit additional working memory resources, allowing them to be better remembered.


2018 ◽  
Vol 1683 ◽  
pp. 86-94 ◽  
Author(s):  
Miguel Angel Guevara ◽  
Edwin Iván Cruz Paniagua ◽  
Marisela Hernández González ◽  
Ivett Karina Sandoval Carrillo ◽  
Mayra Linné Almanza Sepúlveda ◽  
...  

2020 ◽  
Vol 29 (4) ◽  
pp. 378-387
Author(s):  
Nathan S. Rose

Recent shifts in the understanding of how the mind and brain retain information in working memory (WM) call for revision to traditional theories. Evidence of dynamic, “activity-silent,” short-term retention processes diverges from conventional models positing that information is always retained in WM by sustained neural activity in buffers. Such evidence comes from machine-learning methods that can decode patterns of brain activity and the simultaneous administration of transcranial magnetic stimulation (TMS) to causally manipulate brain activity in specific areas and time points. TMS can “ping” brain areas to both reactivate latent representations retained in WM and affect memory performance. On the basis of these findings, I argue for a supplement to sustained retention mechanisms. Brain-decoding methods also reveal that dynamic levels of representational codes are retained in WM, and these vary according to task context, from perceptual (sensory) codes in posterior areas to abstract, recoded representations distributed across frontoparietal regions. A dynamic-processing model of WM is advanced to account for the overall pattern of results.


2019 ◽  
pp. 108705471987948 ◽  
Author(s):  
Steven Woltering ◽  
Chao Gu ◽  
Zhong-Xu Liu ◽  
Rosemary Tannock

Objective: ADHD has been associated with persistent problems of working memory. This study investigated the efficacy of an intensive and adaptive computerized working memory treatment (CWMT) at behavioral and neural levels. Method: College students ( n = 89; 40 females) with ADHD were randomized into a standard-length CWMT (45 min/session, 25 sessions, n = 29), shortened-length CWMT (15 min/session, 25 sessions, n = 32), and a waitlist group ( n = 28). Both CWMT groups received treatment for 5 days a week for 5 weeks. Lab sessions before and after CWMT assessed electroencephalography (EEG) indicators of working memory, behavioral indicators of working memory performance, and ADHD symptomatology. Results: No evidence was found for neural or any other behavioral transfer effects of improvement for the CWMT treatment groups over the active control or waitlist group. Conclusion: Our study does not provide evidence for the benefits of CWMT at neural or behavioral levels.


Sign in / Sign up

Export Citation Format

Share Document