Neuroanatomical and neurophysiological consequences of strabismus: Changes in the structural and functional organization of the primary visual cortex in cats with alternating fixation and strabismic amblyopia

Strabismus ◽  
2002 ◽  
Vol 10 (2) ◽  
pp. 95-105 ◽  
Author(s):  
Siegrid Löwel ◽  
Ralf Engelmann
2011 ◽  
Vol 228 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Fernanda Pohl-Guimaraes ◽  
Thomas E. Krahe ◽  
Alexandre E. Medina

2019 ◽  
Vol 286 (1912) ◽  
pp. 20191910 ◽  
Author(s):  
Liam J. Norman ◽  
Lore Thaler

The functional specializations of cortical sensory areas were traditionally viewed as being tied to specific modalities. A radically different emerging view is that the brain is organized by task rather than sensory modality, but it has not yet been shown that this applies to primary sensory cortices. Here, we report such evidence by showing that primary ‘visual’ cortex can be adapted to map spatial locations of sound in blind humans who regularly perceive space through sound echoes. Specifically, we objectively quantify the similarity between measured stimulus maps for sound eccentricity and predicted stimulus maps for visual eccentricity in primary ‘visual’ cortex (using a probabilistic atlas based on cortical anatomy) to find that stimulus maps for sound in expert echolocators are directly comparable to those for vision in sighted people. Furthermore, the degree of this similarity is positively related with echolocation ability. We also rule out explanations based on top-down modulation of brain activity—e.g. through imagery. This result is clear evidence that task-specific organization can extend even to primary sensory cortices, and in this way is pivotal in our reinterpretation of the functional organization of the human brain.


2010 ◽  
Vol 9 (8) ◽  
pp. 770-770 ◽  
Author(s):  
M. Vanni ◽  
M. Villeneuve ◽  
M. Bickford ◽  
H. Petry ◽  
C. Casanova

2020 ◽  
Author(s):  
Peichao Li ◽  
Anupam K. Garg ◽  
Li A. Zhang ◽  
Mohammad S. Rashid ◽  
Edward M. Callaway

AbstractStudies of color perception have led to mechanistic models of how signals from cone-opponent retinal ganglion cells are integrated to generate color appearance. But it is not known where or how these hypothesized mechanisms occur in the brain. Here we show that cone opponent signals transmitted from the retina to primary visual cortex (V1) are integrated through highly organized circuits within V1 to generate the color opponent mechanisms that underlie color appearance. Combining intrinsic signal optical imaging (ISI) and 2-photon calcium imaging (2PCI) at single cell resolution, we demonstrate cone-opponent functional domains (COFDs) that combine L/M cone-opponent and S/L+M cone-opponent signals in precisely the combinations predicted from psychophysical studies of color perception. These give rise to an orderly organization of hue preferences of the neurons within the COFDs and the generation of hue “pinwheels”. COFDs occupy regions corresponding to both high and low cytochrome oxidase intensity (“blobs” and “interblobs”) but have a bias toward blobs. Thus, neural circuits in the primary visual cortex establish the boundary conditions for color opponency and unique hues.One Sentence SummaryCone-opponent functional domains generate color opponent functional architecture in primary visual cortex.


2017 ◽  
Vol 117 (3) ◽  
pp. 1395-1406 ◽  
Author(s):  
Benjamin Scholl ◽  
Johnathan Rylee ◽  
Jeffrey J. Luci ◽  
Nicholas J. Priebe ◽  
Jeffrey Padberg

Orientation selectivity in primary visual cortex (V1) has been proposed to reflect a canonical computation performed by the neocortical circuitry. Although orientation selectivity has been reported in all mammals examined to date, the degree of selectivity and the functional organization of selectivity vary across mammalian clades. The differences in degree of orientation selectivity are large, from reports in marsupials that only a small subset of neurons are selective to studies in carnivores, in which it is rare to find a neuron lacking selectivity. Furthermore, the functional organization in cortex varies in that the primate and carnivore V1 is characterized by an organization in which nearby neurons share orientation preference while other mammals such as rodents and lagomorphs either lack or have only extremely weak clustering. To gain insight into the evolutionary emergence of orientation selectivity, we examined the nine-banded armadillo, a species within the early placental clade Xenarthra. Here we use a combination of neuroimaging, histological, and electrophysiological methods to identify the retinofugal pathways, locate V1, and for the first time examine the functional properties of V1 neurons in the armadillo ( Dasypus novemcinctus) V1. Individual neurons were strongly sensitive to the orientation and often the direction of drifting gratings. We uncovered a wide range of orientation preferences but found a bias for horizontal gratings. The presence of strong orientation selectivity in armadillos suggests that the circuitry responsible for this computation is common to all placental mammals.NEW & NOTEWORTHY The current study shows that armadillo primary visual cortex (V1) neurons share the signature properties of V1 neurons of primates, carnivorans, and rodents. Furthermore, these neurons exhibit a degree of selectivity for stimulus orientation and motion direction similar to that found in primate V1. Our findings in armadillo visual cortex suggest that the functional properties of V1 neurons emerged early in the mammalian lineage, near the time of the divergence of marsupials.


Sign in / Sign up

Export Citation Format

Share Document