Soil biota and non-native plant invasions.

Author(s):  
Ragan M. Callaway ◽  
◽  
Jacob E. Lucero ◽  

The trajectory of plant invasions - for better or for worse - can be tied to interactions between plants and the soil community. Here, we highlight five broad ways in which belowground interactions can influence the trajectory of biological invasions by non-native plant species. First, many non-native plant species in their non-native ranges can interact very differently with the resident soil community than do native species. Second, non-native plant species often interact very differently with the soil community in their non-native ranges than in their native ranges, which can result in enemy release from antagonistic interactions. Third, non-native plant species can cultivate a soil community that disproportionately harms native competitors in invaded communities. Fourth, antagonistic soil biota in invaded communities can reduce the performance of non-native plant species, resulting in meaningful biotic resistance against invasion. Fifth, besides or in addition to antagonistic interactions with soil biota, soil mutualisms can promote the success of invasive plant species (i) when mutualists co-invade with non-native plant species that require obligate specialist mutualists, (ii) when mutualists enhance the performance of non-native plant species in their non-native ranges, and (iii) when biotic interactions in the invaded community suppress the soil mutualists of native plant species. We conclude that management practices aimed at manipulating plant - soil interactions have considerable potential to help control plant invasions, but further work is needed to understand the spatial, temporal, taxonomic and biogeographic drivers of context dependence in interactions among plants and soil biota.

Author(s):  
Ragan M. Callaway ◽  
Jacob E. Lucero

Abstract The trajectory of plant invasions - for better or for worse - can be tied to interactions between plants and the soil community. Here, we highlight five broad ways in which belowground interactions can influence the trajectory of biological invasions by non-native plant species. First, many non-native plant species in their non-native ranges can interact very differently with the resident soil community than do native species. Second, non-native plant species often interact very differently with the soil community in their non-native ranges than in their native ranges, which can result in enemy release from antagonistic interactions. Third, non-native plant species can cultivate a soil community that disproportionately harms native competitors in invaded communities. Fourth, antagonistic soil biota in invaded communities can reduce the performance of non-native plant species, resulting in meaningful biotic resistance against invasion. Fifth, besides or in addition to antagonistic interactions with soil biota, soil mutualisms can promote the success of invasive plant species (i) when mutualists co-invade with non-native plant species that require obligate specialist mutualists, (ii) when mutualists enhance the performance of non-native plant species in their non-native ranges, and (iii) when biotic interactions in the invaded community suppress the soil mutualists of native plant species. We conclude that management practices aimed at manipulating plant - soil interactions have considerable potential to help control plant invasions, but further work is needed to understand the spatial, temporal, taxonomic and biogeographic drivers of context dependence in interactions among plants and soil biota.


2007 ◽  
Vol 138 (1-2) ◽  
pp. 1-12 ◽  
Author(s):  
Anne-Line Bjerknes ◽  
Ørjan Totland ◽  
Stein Joar Hegland ◽  
Anders Nielsen

2021 ◽  
Author(s):  
Xiang-Qin Li ◽  
Sai-Chun Tang ◽  
Yu-Mei Pan ◽  
Chun-Qiang Wei ◽  
Shi-Hong Lü

Abstract Aims Nitrogen (N) deposition, precipitation and their interaction affect plant invasions in temperate ecosystems with limiting N and water resources, but whether and how they affect plant invasions in subtropical native communities with abundant N and precipitation remains unclear. Methods We constructed in situ artificial communities with 12 common native plant species in a subtropical system and introduced four common invasive plant species and their native counterparts to these communities. We compared plant growth and establishment of introduced invasive species and native counterparts in communities exposed to ambient (CK), N addition (N+), increased precipitation (P+) and N addition plus increased precipitation (P+N+). We also investigated the density and aboveground biomass of communities under such conditions. Important Findings P+ alone did not enhance the performance of invasive species or native counterparts. N+ enhanced only the aboveground biomass and relative density of invasive species. P+N+ enhanced the growth and establishment performance of both invasive species and native counterparts. Most growth and establishment parameters of invasive species were greater than those of native counterparts under N+, P+ and P+N+ conditions. The density and aboveground biomass of native communities established by invasive species were significantly lower than those of native communities established by native counterparts under P+N+ conditions. These results suggest that P+ may magnify the effects of N+ on performance of invasive species in subtropical native communities where N and water are often abundant, which may help to understand the effect of global change on plant invasion in subtropical ecosystems.


2014 ◽  
Vol 10 (1) ◽  
pp. 20130939 ◽  
Author(s):  
Thomas J. Stohlgren ◽  
Marcel Rejmánek

A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species–area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 ( Science 339 , 316–318. ( doi:10.1126/science.1226817 )), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness–log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.


2015 ◽  
Vol 112 (14) ◽  
pp. 4387-4392 ◽  
Author(s):  
Chris D. Thomas ◽  
G. Palmer

Plants are commonly listed as invasive species, presuming that they cause harm at both global and regional scales. Approximately 40% of all species listed as invasive within Britain are plants. However, invasive plants are rarely linked to the national or global extinction of native plant species. The possible explanation is that competitive exclusion takes place slowly and that invasive plants will eventually eliminate native species (the “time-to-exclusion hypothesis”). Using the extensive British Countryside Survey Data, we find that changes to plant occurrence and cover between 1990 and 2007 at 479 British sites do not differ between native and non-native plant species. More than 80% of the plant species that are widespread enough to be sampled are native species; hence, total cover changes have been dominated by native species (total cover increases by native species are more than nine times greater than those by non-native species). This implies that factors other than plant “invasions” are the key drivers of vegetation change. We also find that the diversity of native species is increasing in locations where the diversity of non-native species is increasing, suggesting that high diversities of native and non-native plant species are compatible with one another. We reject the time-to-exclusion hypothesis as the reason why extinctions have not been observed and suggest that non-native plant species are not a threat to floral diversity in Britain. Further research is needed in island-like environments, but we question whether it is appropriate that more than three-quarters of taxa listed globally as invasive species are plants.


2015 ◽  
Vol 16 (2) ◽  
pp. 87-95 ◽  
Author(s):  
N. Grant-Hoffman ◽  
S. Parr ◽  
T. Blanke

2017 ◽  
Vol 18 (3) ◽  
pp. 227-234
Author(s):  
Jessica D Lubell ◽  
Bryan Connolly ◽  
Kristina N Jones

Rhodora ◽  
10.3119/18-11 ◽  
2019 ◽  
Vol 121 (987) ◽  
pp. 159
Author(s):  
Adam J. Ramsey ◽  
Steven M. Ballou ◽  
Jennifer R. Mandel

Sign in / Sign up

Export Citation Format

Share Document