Plant invasions: the role of biotic interactions
Latest Publications


TOTAL DOCUMENTS

45
(FIVE YEARS 45)

H-INDEX

1
(FIVE YEARS 1)

Published By CABI

9781789242171

Author(s):  
Carine Emer ◽  
◽  
Sérgio Timóteo ◽  
◽  

Every organism on Earth, whether in natural or anthropogenic environments, is connected to a complex web of life, the famous 'entangled bank' coined by Darwin in 1859. Non-native species can integrate into local 'banks' by establishing novel associations with the resident species. In that context, network ecology has been an important tool to study the interactions of non-native species and the effects on recipient communities due to its ability to simultaneously investigate the assembly and disassembly of species interactions as well as their functional roles. Its visually appealing tools and relatively simple metrics gained momentum among scientists and are increasingly applied in different areas of ecology, from the more theoretical grounds to applied research on restoration and conservation. A network approach helps us to understand how plant invasions may or may not form novel species associations, how they change the structure of invaded communities, the outcomes for ecosystem functionality and, ultimately, the implications for the conservation of ecological interactions. Networks have been widely used on pollination studies, especially from temperate zones, unveiling their nested patterns and the mechanisms by which non-native plants integrate into local communities. Yet, very few papers have used network approaches to assess plant invasion effects in other systems such as plant-herbivore, plant-pathogen or seed-dispersal processes. Here we describe how joining network ecology with plant invasion biology started and how it has developed over the last few decades. We show the extent of its contribution, despite contradictory results and biases, to a better understanding of the role of non-native plant species in shaping community structure. Finally, we explore how it can be further improved to answer emerging questions.


Author(s):  
Christopher N. Kaiser-Bunbury ◽  
◽  
Benno I. Simmons ◽  
◽  

Invasive plant species degrade and homogenize ecosystems worldwide, thereby altering ecosystem processes and function. To mitigate and reverse the impact of invasive plants on pollination, a key ecosystem function, conservation scientists and practitioners restore ecological communities and study the impact of such management interventions on plant-pollinator communities. Here, we describe opportunities and challenges associated with restoring pollination interactions as part of a holistic ecosystem-based restoration approach. We introduce a few general concepts in restoration ecology, and outline best planning and evaluation practices of restoring pollination interactions on the community level. Planning involves the selection of suitable plant species to support diverse pollinator communities, which includes considerations of the benefits and disadvantages of using native vs exotic, and bridge and framework plant species for restoration. We emphasize the central role of scientific- and community-level approaches for the planning phase of pollination restoration. For evaluation purposes, we argue that appropriate network indicators have the advantage of detecting changes in species behaviour with consequences for ecosystem processes and functions before these changes show up in altered species communities. Suitable network metrics may include interaction diversity and evenness, and network measures that describe the distribution of species, such as network and species-level specialization, modularity and motifs. Finally, we discuss the usefulness of the network approach in evaluating the benefits of restoration interventions for pollination interactions, and propose that applied network ecologists take a central role in transferring theory into practice.


Author(s):  
John D. Parker ◽  
◽  
John L. Devaney ◽  
Nathan P. Lemoine ◽  
◽  
...  

Biotic resistance to plant invasions takes many forms: consumption by native herbivores, competition with native plants and infection by native pathogens. But how often does biotic resistance prevent the damaging monocultures that typify the most problematic plant invaders, and how often is biotic resistance overwhelmed by the direct and indirect impacts of human activities? This chapter attempts to answer these questions, drawing on the long history of research into biotic resistance. We first briefly describe the major forms of biotic resistance to exotic plant invasions as an antecedent to other, more detailed chapters on competition, herbivory and pathogens. We then describe a new neutral model where variance in disturbance promotes invasions over the short term, but over longer timescales only propagule pressure drives invasions. These findings are a cautionary tale; pending increases in global trade and travel, particularly to the tropics, may provide the prerequisite disturbance and propagule pressure needed to ultimately stoke further invasions. Finally, we highlight case studies where invasions have been mitigated by restoration of biotic resistance from native herbivores and competitors. These studies provide strong empirical support that conservation of native biodiversity can be a nature-based solution to some invasions, although it remains to be seen if climate change will alter these effects over longer timescales.


Author(s):  
Peter M. Kotanen ◽  

Non-native plants rarely escape damage by herbivores. Instead, upon arrival in a new region, they begin to acquire new enemies, replacing those they have lost during their migration. These herbivores can include both natives to the new region and species that have themselves been accidentally or deliberately introduced from elsewhere, potentially including examples originating from the invader's original range. Shifts of new enemies from other hosts can occur over a range of timescales, depending in part on whether evolutionary change is required, but are likely to be faster for plants that are widespread and phylogenetically related to a herbivore's original host, and faster for generalist herbivores than for specialists. The occurrence of herbivores is not necessarily uniform across an invader's range; instead, they may be less diverse or abundant in host populations that are geographically or ecologically marginal, though existing evidence is mixed. Collectively, these new suites of herbivores can affect the growth and fitness of invaders, both directly by damaging them and indirectly by attacking their competitors. Studies comparing the demographic consequences of herbivory for successful vs unsuccessful invaders may help to clarify how often such impacts limit invasiveness. The view that an invader enters 'enemy-free' space is inaccurate; instead, persistence and spread of non-native plants often may be affected by the novel and changing assemblage of herbivores that they acquire within their new distribution.


Author(s):  
Marcelo A. Aizen ◽  
◽  
Carolina L. Morales ◽  

There has been growing interest in the consequences of invasive non-native plants for the plant-pollinator mutualism, most likely because of its relevance for the maintenance of terrestrial biodiversity and food production. However, the development of this research field has been thematically uneven and the overall evidence inconclusive. Many studies have focused on how non-native plants interact with native plants via pollinator sharing, which have allowed meta-analytical syntheses, whereas several others have looked at how frequently non-native plants integrate into native plant-pollinator webs and how they affect network structure. However, relatively few studies have addressed the consequences of invasive plants for pollinators. Overall, the research approach in this area has been predominantly phenomenological rather than mechanistic, which has hindered our understanding of apparently contradictory evidence. One key characteristic of invasive non-native plants that seems to mediate negative effects on the pollination mutualism is the high relative abundance that they reach at late stages of invasion. This high dominance is apparently the main trigger of all the disruptive direct and indirect effects that are discussed in this chapter. Finally, we identify several intriguing questions on the ecological and evolutionary consequences of invasive plants for the plant-pollinator mutualism waiting to be answered.


Author(s):  
Elizabeth M. Wandrag ◽  
◽  
Jane A. Catford ◽  
◽  
◽  
...  

The introduction of species to new locations leads to novel competitive interactions between resident native and newly-arriving non-native species. The nature of these competitive interactions can influence the suitability of the environment for the survival, reproduction and spread of non-native plant species, and the impact those species have on native plant communities. Indeed, the large literature on competition among plants reflects its importance in shaping the composition of plant communities, including the invasion success of non-native species. While competition and invasion theory have historically developed in parallel, the increasing recognition of the synergism between the two themes has led to new insights into how non-native plant species invade native plant communities, and the impacts they have on those plant communities. This chapter provides an entry point into the aspects of competition theory that can help explain the success, dominance and impacts of invasive species. It focuses on resource competition, which arises wherever the resources necessary for establishment, survival, reproduction and spread are in limited supply. It highlights key hypotheses developed in invasion biology that relate to ideas of competition, outlines biotic and abiotic factors that influence the strength of competition and species' relative competitive abilities, and describes when and how competition between non-native and native plant species can influence invasion outcomes. Understanding the processes that influence the strength of competition between non-native and native plant species is a necessary step towards understanding the causes and consequences of biological invasions.


Author(s):  
Cang Hui ◽  
◽  
Pietro Landi ◽  
Guillaume Latombe ◽  
◽  
...  

Changes in biotic interactions in the native and invaded range can enable a non-native species to establish and spread in novel environments. Invasive non-native species can in turn generate impacts in recipient systems partly through the changes they impose on biotic interactions; these interactions can lead to altered ecosystem processes in the recipient systems. This chapter reviews models, theories and hypotheses on how invasion performance and impact of introduced species in recipient ecosystems can be conjectured according to biotic interactions between native and non-native species. It starts by exploring the nature of biotic interactions as ensembles of ecological and evolutionary games between individuals of both the same and different groups. This allows us to categorize biotic interactions as direct and indirect (i.e. those involving more than two species) that emerge from both coevolution and ecological fitting during community assembly and invasion. We then introduce conceptual models that can reveal the ecological and evolutionary dynamics between interacting non-native and resident species in ecological networks and communities. Moving from such theoretical grounding, we review 20 hypotheses that have been proposed in invasion ecology to explain the invasion performance of a single non-native species, and seven hypotheses relating to the creation and function of assemblages of non-native species within recipient ecosystems. We argue that, although biotic interactions are ubiquitous and quintessential to the assessment of invasion performance, they are nonetheless difficult to detect and measure due to strength dependency on sampling scales and population densities, as well as the non-equilibrium transient dynamics of ecological communities and networks. We therefore call for coordinated efforts in invasion science and beyond, to devise and review approaches that can rapidly map out the entire web of dynamic interactions in a recipient ecosystem.


Author(s):  
Lohengrin A. Cavieres ◽  
◽  

Biological invasions are one the most important drivers of the current environmental changes generating important biodiversity losses. Although several hypotheses have been proposed to understand the mechanisms underpinning biological invasions, most of them relate to negative interactions among native and invasive species, where the capacity for many invasive species to reduce diversity is often attributed to a greater competitiveness. However, neighbouring species can also show facilitative interactions, where the presence of one species can facilitate another directly by improving environmental conditions or indirectly through negative effects on a third party species. This chapter reviews the scientific literature on plant invasion, seeking examples of where facilitative interactions either among native and non-native plant species or among non-native species were demonstrated. There are several examples of native species that directly facilitate a non-native species, while examples of native species having a negative effect either on a native or a non-native species that compete with a target non-native, generating a net indirect facilitative effect of the native on the target non-native, are less numerous. Direct facilitation among non-native species has been reported as part of the 'invasional meltdown' phenomenon (Chapter 8, this volume). There are cases where non-native species can have a negative effect on a native species that competes with a target non-native, generating a net indirect facilitative effect among the non-natives. Finally, a non-native species can have a direct facilitative effect on native species, which might have important implications in restoration.


Author(s):  
Stephanie G. Yelenik ◽  
◽  
Carla M. D’Antonio ◽  
Evan M. Rehm ◽  
Iain R. Caldwell ◽  
...  

Unlike traditional successional theory, Alternate Stable Equilibrium (ASE) theory posits that more than one community state is possible in a single environment, depending on the order that species arrive. ASE theory is often invoked in management situations where initial stressors have been removed, but native-dominated communities are not returning to degraded areas. Fundamental to this theory is the assumption that equilibria are maintained by positive feedbacks between colonizers and their environment. While ASE has been relatively well studied in aquatic ecosystems, more complex terrestrial systems offer multiple challenges, including species interactions across trophic levels that can lead to multiple feedbacks. Here, we discuss ASE theory as it applies to terrestrial, invaded ecosystems, and detail a case study from Hawai'i that exemplifies how species interactions can favour the persistence of invaders, and how an understanding of interactions and feedbacks can be used to guide management. Our system includes intact native-dominated mesic forest and areas cleared for pasture, planted with non-native grasses, and later planted with a monoculture of a native nitrogen-fixing tree in an effort to restore forests. We discuss interactions between birds, understorey fruiting native species, understorey non-native grasses, soils and bryophytes in separate feedback mechanisms, and explain our efforts to identify which of these feedbacks is most important to address in a management context. Finally, we suggest that using models can help overcome some of the challenges that terrestrial ecosystems pose when studying ASE.


Author(s):  
Ana Montero-Castaño ◽  
◽  
Anna Traveset ◽  

Most plant species rely on, or benefit from, animal pollination. Therefore, pollination interactions are expected to play a key role in the reproduction and invasion success of non-native plants in their new areas. Understanding this role will allow us to better predict certain plant invasions. Also, it will allow us to explore the potential of invasion management measures based on disrupting or avoiding pollination interactions. In this chapter we review the available information on reproductive systems and their degree of dependence on animal-mediated pollination of non-native plant species. We review the characteristics of resident pollinators feeding on non-native plants and the different environmental setups that allow or impede non-native plants to reproduce in their new areas. Finally, we explore the scarce literature on invasion management measures based on disrupting pollination interactions and discuss their potentiality. Evidence so far shows that animal pollination does not usually act as an effective barrier to invasion. Most introduced plants are able to receive suitable pollination service from resident pollinators, while others are able to minimize their reliance on pollinators through different mechanisms (e.g. selfing or asexual reproduction). The environmental settings where the introduction occurs (for instance, the presence of neighbours with similar or dissimilar flower morphologies), can play an important role on the success or failure of non-native plants overcoming reproductive barriers. Although it seems that most introduced plants do not face pollination barriers, we consider that, for certain species, the disruption or avoidance of pollination interactions as control or prevention measures deserve further exploration.


Sign in / Sign up

Export Citation Format

Share Document