Genetic Population Structure of Muskellunge in the Great Lakes

2013 ◽  
Vol 142 (4) ◽  
pp. 1075-1089 ◽  
Author(s):  
Kevin L. Kapuscinski ◽  
Brian L. Sloss ◽  
John M. Farrell
2018 ◽  
Vol 75 (6) ◽  
pp. 836-849 ◽  
Author(s):  
Thomas D. Morgan ◽  
Carly F. Graham ◽  
Andrew G. McArthur ◽  
Amogelang R. Raphenya ◽  
Douglas R. Boreham ◽  
...  

Round whitefish (Prosopium cylindraceum) have a broad, disjunct range across northern North America and Eurasia, and little is known about their genetic population structure. We performed genetic analyses of round whitefish from 17 sites across its range using nine microsatellites, two mitochondrial DNA (mtDNA) loci, and 4918 to 8835 single-nucleotide polymorphism (SNP) loci. Our analyses identified deep phylogenetic division between eastern and western portions of the range, likely indicative of origins from at least two separate Pleistocene glacial refugia. Regionally, microsatellites and SNPs identified congruent patterns in subdivision, and population structure was consistent with expectations based on hydrologic connectivity. Within the Laurentian Great Lakes, Lake Huron and Lake Ontario were identified as key areas of interest. Lake Huron appears to be a contemporary source population for several other Great Lakes, and Lake Ontario contains a genetically discrete group of round whitefish. In all cases, multiple genetic markers yielded similar patterns, but SNPs offered substantially enhanced resolution. We conclude that round whitefish have population subdivision on several scales important for understanding their evolutionary history and conservation planning.


2017 ◽  
Vol 95 (11) ◽  
pp. 869-876 ◽  
Author(s):  
Paul Hapeman ◽  
Emily K. Latch ◽  
Olin E. Rhodes ◽  
Brad Swanson ◽  
C. William Kilpatrick

Reintroduction programs have been pivotal in augmenting populations of fishers (Pekania pennanti (Erxleben, 1777)) and re-establishing them to their former range in North America. The majority of reintroduction efforts in fishers have been considered demographically successful, but reintroductions can alter genetic population structure and success has rarely been evaluated in fishers from a genetic standpoint. We used microsatellite data (n = 169) to examine genetic population structure of fishers in the Great Lakes region and comment on the success of past reintroductions at two different spatial scales. We found significant genetic population structure among source and reintroduced populations within the Great Lakes region and large-scale genetic structure between fisher populations located in two geographically distant regions (Great Lakes and Northeast) in the eastern United States. Reintroductions associated with the Great Lakes produced results that were largely consistent with other studies of fisher reintroductions in the Northeast. However, our data are the first to support a measurable impact on genetic population structure in Pekania pennanti pennanti (Erxleben, 1777) from a reintroduction using geographically distant source and reintroduced populations. When feasible, we strongly recommend that reintroduction programs include an investigation of the underlying genetic structure to better define intended goals and supplement measures of demographic success.


2013 ◽  
Vol 59 (2) ◽  
pp. 281-285 ◽  
Author(s):  
Desiré L. Dalton ◽  
Pauline Charruau ◽  
Lorraine Boast ◽  
Antoinette Kotzé

2002 ◽  
Vol 47 (9) ◽  
pp. 1642-1650 ◽  
Author(s):  
Lucy C. Kelly ◽  
Simon D. Rundle ◽  
David T. Bilton

2017 ◽  
Vol 27 (3) ◽  
pp. 699-709 ◽  
Author(s):  
Peter T. Euclide ◽  
Natalie M. Flores ◽  
Matthew J. Wargo ◽  
C. William Kilpatrick ◽  
J. Ellen Marsden

Sign in / Sign up

Export Citation Format

Share Document