ICP OES Simultaneous Determination of Ca, Cu, Fe, Mg, Mn, Na, and P in Biodiesel by Axial and Radial Inductively Coupled Plasma-Optical Emission Spectrometry

2008 ◽  
Vol 41 (9) ◽  
pp. 1615-1622 ◽  
Author(s):  
Roseli Martins de Souza ◽  
Luiz Gustavo Leocádio ◽  
Carmem Lúcia P. da Silveira
2016 ◽  
Vol 723 ◽  
pp. 579-583 ◽  
Author(s):  
Cheng Ying Zhou ◽  
Wei Qu ◽  
Wen Juan Li ◽  
Liu Lu Cai

Arsenic, antimony and bismuth in gold ores were simultaneously determined by inductively coupled plasma optical emission spectrometry (ICP-OES) with spectral lines of 188.980, 206.834 and 223.061nm as analytical line respectively, under preset instrumental parameters. The linear range of the method for arsenic, antimony and bismuth was 0~80ug/mL and the correlation coefficient was greater than 0.99995. The detection limit for arsenic, antimony and bismuth was 2.87, 1.63 and 0.84ug/g respectively. The results of this method are consistent with the national standard method, and the relative error is less than 1.5%. The relative standard deviation (RSD) of this method is better than 5.0% (n=11) with good accuracy and precision. ICP-OES can be used for simultaneous determination of multiple elements and is suitable to the analysis of large quantities of samples.


2014 ◽  
Vol 97 (3) ◽  
pp. 687-699 ◽  
Author(s):  
James M Bartos ◽  
Barton L Boggs ◽  
J Harold Falls ◽  
Sanford A Siegel

Abstract A two-part single-laboratory validation study was conducted for determination of the P and K content in commercial fertilizer materials by inductively coupled plasma-optical emission spectrometry (ICP- OES). While several methods exist for determination of P and K in fertilizer products, the main focus of this study was on ICP-OES determination, which offers several unique advantages. Fertilizer samples with consensus P and K values from the Magruder and Association of Fertilizer and Phosphate Chemists (AFPC) check sample programs were selected for this study. Validation materials ranging from 4.4 to 52.4% P2O5 (1.7 to 22.7% P) and 3 to 62% K2O (2.5 to 51.5% K) were utilized. Because all P and K compounds contained in fertilizer materials are not "available" for plants to use, this study was conducted in two parts. Part A focused on ammonium citrate–disodium EDTA as the extraction solvent, as it estimates the pool of fertilizer P and K that is considered available to plants. Part B focused on hydrochloric acid as the digestion solvent, as it estimates the total P and K content of the fertilizer product. Selectivity studies indicated that this method can have a high bias for fertilizer products containing sources of phosphite or organic P compared to gravimetric or colorimetric methods that measure just orthophosphate. Provided the analytical challenges outlined in this study are addressed, this method offers the potential for a quick, accurate, and safe alternative for determining the P and K content of commercial inorganic fertilizer materials.


Sign in / Sign up

Export Citation Format

Share Document