Single-Point GPS Positioning Accuracy Using Precise GPS Data

1997 ◽  
Vol 42 (4) ◽  
pp. 185-192 ◽  
Author(s):  
Yang Gao ◽  
James F. McLellan ◽  
Mohamed A. Abousalem
2014 ◽  
Vol 49 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Karol Dawidowicz ◽  
Grzegorz Krzan ◽  
Krzysztof Świątek

ABSTRACT GNSS observations carried out in a network of Continuously Operating Reference Station (CORS) are a complex systems which offer post-processing as well as corrections sent in realtime. In Poland, such a system has been in operation since June 2008, known as the Polish Active Geodetic Network (ASG-EUPOS). Usually the measurements performed in real time characterized lower accuracy than static measurements. For users who demand the highest precision results the post-processing services are provided. The paper presents an analysis of the position determination accuracy using ASG-EUPOS POZGEO service. It is well known that the final accuracy is e.g. the measuring conditions, time of observations or number of measured frequencies dependent. We processed 4 consecutive days of GPS data to determine how the accuracy of derived positional coordinates depends on the length of the observing session, the characteristics of horizon visibility on points and the used in post-processing observations (L1 or L1+L2). The POZGEO results show that horizontal accuracies of about 1-2 cm and vertical accuracies of 4 cm are achievable provided 0.5 hours dual frequency GPS data. The accuracy clearly decreases for point measured under conditions of strongly limited satellite availability


2020 ◽  
Vol 73 (4) ◽  
pp. 846-860 ◽  
Author(s):  
Lahouaria Tabti ◽  
Salem Kahlouche ◽  
Belkacem Benadda ◽  
Bilal Beldjilali

The main objective of the European Geostationary Navigation Overlay System (EGNOS) is to improve the positioning accuracy by correcting several error sources affecting the Global Positioning System (GPS) and to provide integrity information to GPS signals for users in real time. This research presents analysis used to investigate improvement in the performance of single-frequency GPS positioning using EGNOS corrections in Algeria. In this study, we performed position measurements with two calculation approaches, the first based on GPS single-point positioning and the second using EGNOS differential corrections. Positioning accuracy was determined by comparison with the known precise coordinates of the sites; and then the improved ionospheric correction using EGNOS was investigated. The results revealed that GPS + EGNOS performance was significantly improved compared with GPS alone, when measurements of horizontal and vertical accuracy were taken into account, and that the EGNOS corrections improved east and north components slightly, and the up component significantly.


GPS Solutions ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 273-282 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Lukasz K. Bonenberg ◽  
Craig M. Hancock ◽  
Gethin W. Roberts

2006 ◽  
Vol 41 (2) ◽  
pp. 79-86 ◽  
Author(s):  
Chalermchon Satirapod ◽  
Somchai Kriengkraiwasin

Performance of Open Source Precise Point Positioning Software Using Single-Frequency GPS Data This research aims to assess the performance of GPS Precise Point Positioning (PPP) with code and carrier phase observations from L1 signal collected from geodetic GPS receiver around the world. A simple PPP software developed for processing the single frequency GPS data is used as a main tool to assess a positioning accuracy. The precise orbit and precise satellite clock corrections were introduced into the software to reduce the orbit and satellite clock errors, while ionosphere-free code and phase observations were constructed to mitigate the ionospheric delay. The remaining errors (i.e. receiver clock error, ambiguity term) are estimated using Extended Kalman Filter technique. The data retrieved from 5 IGS stations located in different countries were used in this study. In addition, three different periods of data were downloaded for each station. The obtained data were then cut into 5-min, 10-min, 15-min and 30-min data segments, and each data segment was individually processed with the developed PPP software to produce final coordinates. Results indicate that the use of 5-min data span can provide a horizontal positioning accuracy at the same level as a pseudorange-based differential GPS technique. Furthermore, results confirm effects of station location and seasonal variation on obtainable accuracies.


2012 ◽  
Vol 433-440 ◽  
pp. 6007-6013
Author(s):  
Wei Duo Huang

In this paper, absorbing the domestic and foreign research results of GPS positioning technology, it is based on further GPS measurements in the highway engineering theory and methods in a systematic study of the GPS data processing process. It also introduces the high-precision GPS data processing software GAMIT. It also gives and analyzes the highway GPS data processing results from control measurements.


Sign in / Sign up

Export Citation Format

Share Document