precise point positioning
Recently Published Documents


TOTAL DOCUMENTS

831
(FIVE YEARS 318)

H-INDEX

41
(FIVE YEARS 9)

Author(s):  
jie zhang ◽  
Lin Zhao ◽  
Fuxin Yang ◽  
Liang Li ◽  
Xiaosong Liu ◽  
...  

Abstract Integrity monitoring of precise point positioning (PPP) can provide tightly guaranteed absolute position error bounds for safety-critical applications. However, complex local environment makes PPP integrity monitoring much more challenging, such as urban canyons. Significant prone multipaths and low observation redundancy are main difficulties to the accuracy and the reliability of PPP. Therefore, we proposed a solution separation-based integrity monitoring algorithm, which is based on a single and dual frequency-mixed undifferenced and uncombined PPP model considering compensation for the multipath error distortion by Gaussian overbounding. Both the static and the kinematic data are utilized to test the proposed algorithm. The results show that the proposed algorithm can produce adequate protection level in horizontal and vertical directions. Furthermore, the proposed algorithm can obtain smoother protection level and positioning error under the dynamic local environment, and effectively suppress the misleading information.


2022 ◽  
Vol 14 (2) ◽  
pp. 334
Author(s):  
Ke Qi ◽  
Yamin Dang ◽  
Changhui Xu ◽  
Shouzhou Gu

Satellite phase fractional cycle biases (FCBs) are crucial to precise point positioning with ambiguity resolution (PPP–AR), and they can improve the accuracy and reliability of a solution. Traditional methods need multiple iterations and need to keep the same reference when estimating satellite phase fractional cycle biases. In this paper, we propose an improved fast estimation of FCB, which does not need any iterations and can select any reference when estimating FCB. We compare the suitability and precision of a traditional and a proposed method by BDS-3 experiments. The results of the FCB experiments show that the calculated time of the proposed method is less than the traditional method and that computation efficiency is increased by 34.71%. These two methods have a similar rate of fixed epochs and ambiguities in the static and dynamic models. However, the time to first fix (TTFF) of the proposed method decreased by 19.69% and 28.83% for the static and dynamic models, respectively. The results show that the proposed method has a better convergence time in PPP–AR.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 457
Author(s):  
Wei Zhou ◽  
Hongliang Cai ◽  
Guo Chen ◽  
Wenhai Jiao ◽  
Qianqian He ◽  
...  

Global navigation services from the quad-constellation of GPS, GLONASS, BDS, and Galileo are now available. The international GNSS monitoring and assessment system (iGMAS) aims to evaluate the navigation performance of the current quad systems under a unified framework. In order to assess impact of orbit and clock errors on the positioning accuracy, the user range error (URE) is always taken as a metric by comparison with the precise products. Compared with the solutions from a single analysis center, the combined solutions derived from multiple analysis centers are characterized with robustness and reliability and preferred to be used as references to assess the performance of broadcast ephemerides. In this paper, the combination method of iGMAS orbit and clock products is described, and the performance of the combined solutions is evaluated by various means. There are different internal precisions of the combined orbit and clock for different constellations, which indicates that consistent weights should be assigned for individual constellations and analysis centers included in the combination. For BDS-3, Galileo, and GLONASS combined orbits of iGMAS, the root-mean-square error (RMSE) of 5 cm is achieved by satellite laser ranging (SLR) observations. Meanwhile, the SLR residuals are characterized with a linear pattern with respect to the position of the sun, which indicates that the solar radiation pressure (SRP) model adopted in precise orbit determination needs further improvement. The consistency between combined orbit and clock of quad-constellation is validated by precise point positioning (PPP), and the accuracies of simulated kinematic tests are 1.4, 1.2, and 2.9 cm for east, north, and up components, respectively.


Space Weather ◽  
2022 ◽  
Author(s):  
Xiaomin Luo ◽  
Junfeng Du ◽  
Yidong Lou ◽  
Shengfeng Gu ◽  
Xinan Yue ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 128
Author(s):  
Bing Xue ◽  
Yunbin Yuan ◽  
Han Wang ◽  
Haitao Wang

Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) is an attractive positioning technology due to its high precision and flexibility. However, the vulnerability of PPP brings a safety risk to its application in the field of life safety, which must be evaluated quantitatively to provide integrity for PPP users. Generally, PPP solutions are processed recursively based on the extended Kalman filter (EKF) estimator, utilizing both the previous and current measurements. Therefore, the integrity risk should be qualified considering the effects of all the potential observation faults in history. However, this will cause the calculation load to explode over time, which is impractical for long-time missions. This study used the innovations in a time window to detect the faults in the measurements, quantifying the integrity risk by traversing the fault modes in the window to maintain a stable computation cost. A non-zero bias was conservatively introduced to encapsulate the effect of the faults before the window. Coping with the multiple simultaneous faults, the worst-case integrity risk was calculated to overbound the real risk in the multiple fault modes. In order to verify the proposed method, simulation and experimental tests were carried out in this study. The results showed that the fixed and hold mode adopted for ambiguity resolution is critical to an integrity risk evaluation, which can improve the observation redundancy and remove the influence of the biased predicted ambiguities on the integrity risk. Increasing the length of the window can weaken the impact of the conservative assumption on the integrity risk due to the smoothing effect of the EKF estimator. In addition, improving the accuracy of observations can also reduce the integrity risk, which indicates that establishing a refined PPP random model can improve the integrity performance.


Survey Review ◽  
2021 ◽  
pp. 1-13
Author(s):  
Hong Zhao ◽  
Zhi Liu ◽  
Guangwei Jiang ◽  
Zhanke Liu ◽  
Yangyang Sun ◽  
...  

2021 ◽  
Vol 13 (24) ◽  
pp. 5093
Author(s):  
Ke Su ◽  
Shuanggen Jin

Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) enables the estimation the ionospheric vertical total electron content (VTEC) as well as the by-product of the satellite Pseudorange observable-specific signal bias (OSB). The single-frequency PPP models, with the ionosphere-float and ionosphere-free approaches in ionospheric studies, have recently been discussed by the authors. However, the multi-frequency observations can improve the performances of the ionospheric research compared with the single-frequency approaches. This paper presents three dual-frequency PPP approaches using the BeiDou Navigation Satellite System (BDS) B1I/B3I observations to investigate ionospheric activities. Datasets collected from the globally distributed stations are used to evaluate the performance of the ionospheric modeling with the ionospheric single- and multi-layer mapping functions (MFs), respectively. The characteristics of the estimated ionospheric VTEC and BDS satellite pseudorange OSB are both analyzed. The results indicated that the three dual-frequency PPP models could all be applied to the ionospheric studies, among which the dual-frequency ionosphere-float PPP model exhibits the best performance. The three dual-frequency PPP models all possess the capacity for ionospheric applications in the GNSS community.


GPS Solutions ◽  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Jacek Paziewski

AbstractWe analyze the observation quality, assess the performance and identify the constraints of quadruple-constellation single-frequency ionospheric-free precise point positioning (SF-IF PPP) with low-cost receivers. It is revealed that low-cost receivers with patch antennas exhibit lower C/N0 records and a weaker elevation dependence of C/N0 than the high-grade equipment. The results demonstrate that low-cost receivers can offer code measurements with similar noise compared to high-grade receivers providing that the multipath effect is eliminated. Regarding positioning performance, it is shown how SF-IF PPP for the high-grade receiver converges approximately two times faster than for the low-cost receiver with a patch antenna. It is confirmed that an application of a survey-grade antenna instead of the patch one noticeably enhances the performance of low-cost receiver SF-IF PPP. The study also reveals that the multipath effect is a dominant factor that constrains the performance of SF-IF PPP with low-cost receivers.


Sign in / Sign up

Export Citation Format

Share Document