gnss observations
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 130)

H-INDEX

18
(FIVE YEARS 5)

Author(s):  
Balazs Lupsic ◽  
Bence Takacs

AbstractThe number of devices equipped with global satellite positioning has exceeded seven billion recently. There are a wide variety of receivers regarding their accuracy and reliability. Low cost, multi-frequency units have been released on the market latterly; however, the number of single-frequency receivers is still significant. Since their measurements are influenced by ionospheric delay, accurate ionosphere models are of utmost importance to reduce the effect. This paper summarizes how Gauss process regression (GPR) can be applied to derive near real-time regional ionosphere models using raw Global Navigation Satellite System (GNSS) observations of permanent stations. While Gauss process is widely used in machine learning, GPR is a nonparametric, Bayesian approach to regression. GPR has several benefits for ionosphere monitoring since it is quite robust and efficient to derive a grid model from data available in irregular set of ionospheric pierce points. The corresponding instrumental delays are estimated by a parallel Kalman filter. The presented algorithm can be applied near real-time, however the results are offline calculated and are compared to two high quality TEC map products. Based on the analysis, the accuracy of the GPR modell is in 2 TECu range. The developed methods could be efficiently applied in the field of autonomous vehicle navigation with meeting both accuracy and integrity requirements.


Author(s):  
Dominic Chukwuebuka Obiegbuna ◽  
Francisca Nneka Okeke ◽  
Kingsley Chukwudi Okpala ◽  
Orji Prince Orji ◽  
Gregory Ibeabuchi Egba ◽  
...  

We have studied and compared the effects of full and partial halo geomagnetic storms on the high latitude ionosphere. The study used the total electron content (TEC) data obtained from the global positioning system (GPS) to examine the level of response of high latitude ionosphere around Ny Alesund, Norway to full and partial halo geomagnetic storms of June 23rd 2015 and January 1st 2016 respectively. This study was carried out using a dual frequency ground based GNSS observations at high latitude (NYAL: 78.56oN, 11.52oE) ionospheric station in Norway. The vertical TEC (VTEC) was extracted from Receiver Independent Exchange (RINEX) formatted GPS-TEC data using the GOPI Software developed by Seemala Gopi. The GOPI software is a GNSS-TEC analysis program which uses ephemeris data and differential code biases (DCBs) in estimating slant TEC (STEC) prior to its conversion to VTEC. From the results, the responses of the high latitude before the storm days were more positive than on the storm days. Also the overall response of the high latitude to the full halo geomagnetic storm was more positive with more impact than that of the partial halo geomagnetic storm.


Author(s):  
Tamara Gulyaeva ◽  
Valentin Shubin ◽  
Haris Haralambous ◽  
Manuel Hernández‐Pajares ◽  
Iwona Stanislawska
Keyword(s):  

TEM Journal ◽  
2021 ◽  
pp. 1721-1727
Author(s):  
Burak Akpınar

Unmanned Aerial Vehicles (UAVs) have been used for accurate orthophoto generation based on advanced Global Navigation Satellite System (GNSS) techniques. In recent years, the UAV systems have become an effective tool for fast monitoring of damages caused by disasters such as the earthquake hazards. The conventional orthophoto generation based on ground control points takes too much time during emergency situations. In the study, different methodologies for the processing of the acquired GNSS Positioning data for direct georeferencing of UAVs were investigated in terms of various orbit products. Evaluating the fitness for emergency response applications, the ground control points (GCPs) also used for validation of the generated orthophoto without using GCPs and based on Precise Point Positioning (PPP) approach. In this study, Ultra-Rapid, Rapid and Final PPP methods based on GNSS observations were used for direct geo-referencing. Thirteen GCPs were located at the study area for the validation of the orthophoto accuracy generated by direct geo-referencing.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7749
Author(s):  
Irina Zakharenkova ◽  
Iurii Cherniak ◽  
Andrzej Krankowski

The 25–26 August 2018 space weather event occurred during the solar minimum period and surprisingly became the third largest geomagnetic storm of the entire 24th solar cycle. We analyzed the ionospheric response at high latitudes of both hemispheres using multi-site ground-based GNSS observations and measurements onboard Swarm and DMSP satellites. With the storm development, the zones of intense ionospheric irregularities of auroral origin largely expanded in size and moved equatorward towards midlatitudes as far as ~55–60° magnetic latitude (MLAT) in the American, European, and Australian longitudinal sectors. The main ionospheric trough, associated with the equatorward side of the auroral oval, shifted as far equatorward as 45–50° MLAT at both hemispheres. The interhemispheric comparison revealed a high degree of similarity in a large expansion of the auroral irregularities oval towards midlatitudes, in addition to asymmetrical differences in terms of larger intensity of plasma density gradients and structures over the Southern auroral and polar cap regions. Evolution of the intense ionospheric irregularities and equatorward expansion of the auroral irregularities oval were well correlated with increases of geomagnetic activity and peaks of the auroral electrojet index.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Farzaneh Zangenehnejad ◽  
Yang Gao

AbstractStarting from 2016, the raw Global Navigation Satellite System (GNSS) measurements can be extracted from the Android Nougat (or later) operating systems. Since then, GNSS smartphone positioning has been given much attention. A high number of related publications indicates the importance of the research in this field, as it has been doing in recent years. Due to the cost-effectiveness of the GNSS smartphones, they can be employed in a wide variety of applications such as cadastral surveys, mapping surveying applications, vehicle and pedestrian navigation and etc. However, there are still some challenges regarding the noisy smartphone GNSS observations, the environment effect and smartphone holding modes and the algorithm development part which restrict the users to achieve high-precision smartphone positioning. In this review paper, we overview the research works carried out in this field with a focus on the following aspects: first, to provide a review of fundamental work on raw smartphone observations and quality assessment of GNSS observations from major smart devices including Google Pixel 4, Google Pixel 5, Xiaomi Mi 8 and Samsung Ultra S20 in terms of their signal strengths and carrier-phase continuities, second, to describe the current state of smartphone positioning research field until most recently in 2021 and, last, to summarize major challenges and opportunities in this filed. Finally, the paper is concluded with some remarks as well as future research perspectives.


2021 ◽  
Author(s):  
Robert Granat ◽  
Andrea Donnellan ◽  
Michael Heflin ◽  
Gregory Lyzenga ◽  
Margaret Glasscoe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document