scholarly journals Performance of Open Source Precise Point Positioning Software Using Single-Frequency GPS Data

2006 ◽  
Vol 41 (2) ◽  
pp. 79-86 ◽  
Author(s):  
Chalermchon Satirapod ◽  
Somchai Kriengkraiwasin

Performance of Open Source Precise Point Positioning Software Using Single-Frequency GPS Data This research aims to assess the performance of GPS Precise Point Positioning (PPP) with code and carrier phase observations from L1 signal collected from geodetic GPS receiver around the world. A simple PPP software developed for processing the single frequency GPS data is used as a main tool to assess a positioning accuracy. The precise orbit and precise satellite clock corrections were introduced into the software to reduce the orbit and satellite clock errors, while ionosphere-free code and phase observations were constructed to mitigate the ionospheric delay. The remaining errors (i.e. receiver clock error, ambiguity term) are estimated using Extended Kalman Filter technique. The data retrieved from 5 IGS stations located in different countries were used in this study. In addition, three different periods of data were downloaded for each station. The obtained data were then cut into 5-min, 10-min, 15-min and 30-min data segments, and each data segment was individually processed with the developed PPP software to produce final coordinates. Results indicate that the use of 5-min data span can provide a horizontal positioning accuracy at the same level as a pseudorange-based differential GPS technique. Furthermore, results confirm effects of station location and seasonal variation on obtainable accuracies.

2020 ◽  
Vol 55 (2) ◽  
pp. 41-60
Author(s):  
Jabir Shabbir Malik

AbstractIn addition to Global Positioning System (GPS) constellation, the number of Global Navigation Satellite System (GLONASS) satellites is increasing; it is now possible to evaluate and analyze the position accuracy with both the GPS and GLONASS constellation. In this article, statistical analysis of static precise point positioning (PPP) using GPS-only, GLONASS-only, and combined GPS/GLONASS modes is evaluated. Observational data of 10 whole days from 10 International GNSS Service (IGS) stations are used for analysis. Position accuracy in east, north, up components, and carrier phase/code residuals is analyzed. Multi-GNSS PPP open-source package is used for the PPP performance analysis. The analysis also provides the GNSS researchers the understanding of the observational data processing algorithm. Calculation statistics reveal that standard deviation (STD) of horizontal component is 3.83, 13.80, and 3.33 cm for GPS-only, GLONASS-only, and combined GPS/GLONASS PPP solutions, respectively. Combined GPS/GLONASS PPP achieves better positioning accuracy in horizontal and three-dimensional (3D) accuracy compared with GPS-only and GLONASS-only PPP solutions. The results of the calculation show that combined GPS/GLONASS PPP improves, on an average, horizontal accuracy by 12.11% and 60.33% and 3D positioning accuracy by 10.39% and 66.78% compared with GPS-only and GLONASS-only solutions, respectively. In addition, the results also demonstrate that GPS-only solutions show an improvement of 54.23% and 62.54% compared with GLONASS-only PPP mode in horizontal and 3D components, respectively. Moreover, residuals of GLONASS ionosphere-free code observations are larger than the GPS code residuals. However, phase residuals of GPS and GLONASS phase observations are of the same magnitude.


GEOMATICA ◽  
2016 ◽  
Vol 70 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Mahmoud Abd Rabbou ◽  
Ahmed El-Rabbany

Single-frequency precise point positioning (PPP) presents a cost-effective positioning technique for a large number of users. However, it possesses low positioning accuracy and convergence time compared with the dual-frequency PPP. Single-frequency PPP commonly employs GPS satellite systems that suffer from poor satellite geometry, especially in dense urban areas. We develop a new single-frequency PPP model that combines the observations of current GNSS constellations, including GPS, GLONASS, Galileo and Beidou. The MGEX IGS final precise products are utilized to account for the orbital and clock errors, while the IGS final global ionospheric maps (GIM) model is used to correct for the ionospheric delay. The GNSS inter-system biases are treated as additional unknowns in the estimation process. The con tri bution of the additional GNSS observations to single-frequency PPP is assessed through solution comparison with its traditional GPS-only counterpart. Various GNSS combinations are considered in the assessment, including GPS/GLONASS, GPS/Galileo, GPS/BeiDou and all-constellation GNSS. It is shown that the additional GNSS observations enhance the PPP solution accuracy and convergence time in comparison with the tra di tional GPS-only solution. Except for stations with a sufficient number of tracked BeiDou satellites, both Galileo and BeiDou have marginal effects on the positioning accuracy due to their limited number of satel lites. However, for stations with a sufficient number of visible BeiDou satellites, an average of 40% PPP accuracy improvement is obtained. The major contribution to the PPP accuracy enhancement is obtained from GLONASS satellite observations.


2017 ◽  
Vol 52 (2) ◽  
pp. 19-26 ◽  
Author(s):  
Ashraf Farah

Abstract Precise Point Positioning (PPP) is a technique used for position computation with a high accuracy using only one GNSS receiver. It depends on highly accurate satellite position and clock data rather than broadcast ephemeries. PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of collected observations. PPP-(dual frequency receivers) offers comparable accuracy to differential GPS. PPP-single frequency receivers has many applications such as infrastructure, hydrography and precision agriculture. PPP using low cost GPS single-frequency receivers is an area of great interest for millions of users in developing countries such as Egypt. This research presents a study for the variability of single frequency static GPS-PPP precision based on different observation durations.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2856
Author(s):  
Junping Zou ◽  
Ahao Wang ◽  
Jiexian Wang

High-precision and low-cost single-frequency precise point positioning (SF-PPP) has been attracting more and more attention in numerous global navigation satellite system (GNSS) applications. To provide the precise ionosphere delay and improve the positioning accuracy of the SF-PPP, the dual-frequency receiver, which receives dual-frequency observations, is used. Based on the serviced precise ionosphere delay, which is generated from the dual-frequency observations, the high-precision SF-PPP is realized. To further improve the accuracy of the SF-PPP and shorten its convergence time, the double-differenced (DD) ambiguity resolutions, which are generated from the DD algorithm, are introduced. This method avoids the estimation of fractional cycle bias (FCB) for the SF-PPP ambiguity. Here, we collected data from six stations of Shanghai China which was processed, and the corresponding results were analyzed. The results of the dual-frequency observations enhanced SF-PPP realize centimeter-level positioning. The difference between the results of two stations estimated with dual-frequency observations enhanced SF-PPP were compared with the relative positioning results computed with the DD algorithm. Experimental results showed that the relative positioning accuracy of the DD algorithm is slightly better than that of the dual-frequency observations enhanced SF-PPP. This could be explained by the effect of the float ambiguity resolutions on the positioning accuracy. The data was processed with the proposed method for the introduction of the DD ambiguity into SF-PPP and the results indicated that this method could improve the positioning accuracy and shorten the convergence time of the SF-PPP. The results could further improve the deformation monitoring ability of SF-PPP.


2017 ◽  
Vol 52 (1) ◽  
pp. 9-18
Author(s):  
Emad El Manaily ◽  
Mahmoud Abd Rabbou ◽  
Adel El-Shazly ◽  
Moustafa Baraka

Abstract Commonly, relative GPS positioning technique is used in Egypt for precise positioning applications. However, the requirement of a reference station is usually problematic for some applications as it limits the operational range of the system and increases the system cost and complexity On the other hand; the single point positioning is traditionally used for low accuracy applications such as land vehicle navigation with positioning accuracy up to 10 meters in some scenarios which caused navigation problems especially in downtown areas. Recently, high positioning accuracy can be obtained through Precise Point Positioning (PPP) technique in which only once GNSS receiver is used. However, the major drawback of PPP is the long convergence time to reach to the surveying grade accuracy compared to the existing relative techniques. Moreover, the PPP accuracy is significantly degraded due to shortage in satellite availability in urban areas. To overcome these limitations, the quad constellation GNSS systems namely; GPS.GLONASS, Galileo and BeiDou can be combined to increase the satellite availability and enhance the satellite geometry which in turn reduces the convergence time. In Egypt, at the moment, the signals of both Galileo and BeiDou could be logged with limited number of satellites up to four and six satellites for both Systems respectively. In this paper, we investigated the performance of the Quad-GNSS positioning in both dual- and single-frequency ionosphere free PPP modes for both high accurate and low cost navigation application, respectively. The performance of the developed PPP models will be investigated through GNSS data sets collected at three Egyptian cities namely, Cairo, Alexandria and Aswan.


2013 ◽  
Vol 66 (4) ◽  
pp. 579-588 ◽  
Author(s):  
R.M. Alkan ◽  
T. Öcalan

This study investigates the accuracy of an online Precise Point Positioning (PPP) service operated by the Geodetic Survey Division of Natural Resources Canada (NRCan), Canadian Spatial Reference System (CSRS)-PPP, by using single/dual-frequency Global Positioning System (GPS) data collected by dual-frequency geodetic-grade and Original Equipment Manufacturer (OEM) board type single-frequency GPS receivers. In this work, a kinematic test was carried out in Halic Bay (Golden Horn), Istanbul, Turkey, to assess the performance of the PPP method in a dynamic environment. Based on this study, it can be concluded that the coordinates estimated from the online CSRS-PPP service have a potential of about metre-level accuracy by processing single frequency data collected by an OEM receiver and about a decimetre to a few centimetres level accuracy by processing dual frequency data collected by a geodetic-grade receiver. In general, results show that the PPP technique has become a significant alternative to the conventional relative (differential) positioning techniques (i.e., Differential GPS (DGPS), Real-time Kinematic (RTK)). The technique does not suffer from the drawbacks of the DGPS technique and has potential to provide the same position accuracy without the requirement for a reference station. Consequently, it has been concluded that the PPP technique may be effectively used in marine applications due to its ease of use and provision of high accuracy, as well as being able to offer reduced field operational costs.


2011 ◽  
Vol 1 (3) ◽  
pp. 233-239 ◽  
Author(s):  
Mohamed Abd-Elazeem ◽  
Ashraf Farah ◽  
Farrag Farrag

Assessment Study of Using Online (CSRS) GPS-PPP Service for Mapping Applications in EgyptMany applications in navigation, land surveying, land title definitions and mapping have been made simpler and more precise due to accessibility of Global Positioning System (GPS) data, and thus the demand for using advanced GPS techniques in surveying applications has become essential. The differential technique was the only source of accurate positioning for many years, and remained in use despite of its cost. The precise point positioning (PPP) technique is a viable alternative to the differential positioning method in which a user with a single receiver can attain positioning accuracy at the centimeter or decimeter scale. In recent years, many organizations introduced online (GPS-PPP) processing services capable of determining accurate geocentric positions using GPS observations. These services provide the user with receiver coordinates in free and unlimited access formats via the internet. This paper investigates the accuracy of the Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP) (CSRS-PPP) service supervised by the Geodetic Survey Division (GSD), Canada. Single frequency static GPS observations have been collected at three points covering time spans of 60, 90 and 120 minutes. These three observed sites form baselines of 1.6, 7, and 10 km, respectively. In order to assess the CSRS-PPP accuracy, the discrepancies between the CSRS-PPP estimates and the regular differential GPS solutions were computed. The obtained results illustrate that the PPP produces a horizontal error at the scale of a few decimeters; this is accurate enough to serve many mapping applications in developing countries with a savings in both cost and experienced labor.


Sign in / Sign up

Export Citation Format

Share Document