Petrotectonic Evolution of the Maksyutov Complex, Southern Urals, Russia: Implications for Ultrahigh-Pressure Metamorphism

1995 ◽  
Vol 37 (7) ◽  
pp. 584-600 ◽  
Author(s):  
V. I. Lennykh ◽  
P. M. Valizer ◽  
Rachel Beane ◽  
Mary Leech ◽  
W. G. Ernst
Tectonics ◽  
1995 ◽  
Vol 14 (4) ◽  
pp. 994-1006 ◽  
Author(s):  
Bradley R. Hacker ◽  
Qingchen Wang

Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 488-492 ◽  
Author(s):  
M. Brown ◽  
C.L. Kirkland ◽  
T.E. Johnson

Abstract A time-series analysis of thermobaric ratios (temperature/pressure [T/P]) for Paleoarchean to Cenozoic metamorphic rocks identified significant shifts in mean T/P that may be related to secular change in the geodynamics on Earth. Thermobaric ratios showed significant (>95% confidence) change points at 1910, 902, 540, and 515 Ma, recording drops in mean T/P, and at 1830, 604, and 525 Ma, recording rises in mean T/P. Highest mean T/P occurred during the Mesoproterozoic, and lowest mean T/P occurred from the Cambrian to the Oligocene. Correlated changes were seen between T/P and global data sets of time-constrained hafnium (Hf) and oxygen (O) isotope compositions in zircon. The range of correlated variation in T/P, Hf, and O was larger during the formation of Rodinia than Columbia. Large changes and a wide range for these variables continued through the Phanerozoic, during which a statistically significant 83 m.y. frequency of T/P excursions recorded the high tempo of orogenic activity associated with the separation, migration, and accretion of continental terranes during the formation of Pangea. Since the early Tonian, the decreasing mean T/P of metamorphism, widespread appearance of blueschist and ultrahigh-pressure metamorphism, and wide fluctuations in Hf and O isotope compositions document a change to the modern plate-tectonic regime, characterized by widespread continental subduction and deeper slab breakoff than in the Proterozoic.


Geology ◽  
2020 ◽  
Vol 48 (10) ◽  
pp. 947-951
Author(s):  
Joseph P. Gonzalez ◽  
Suzanne L. Baldwin ◽  
Jay B. Thomas ◽  
William O. Nachlas ◽  
Paul G. Fitzgerald

Abstract The Appalachian orogen has long been enigmatic because, compared to other parts of the Paleozoic orogens that formed following the subduction of the Iapetus Ocean, direct evidence for ultrahigh-pressure (UHP) metamorphism has never been found. We report the first discovery of coesite in the Appalachian orogen in a metapelite from the mid-Ordovician (Taconic orogeny) Tillotson Peak Complex in Vermont (USA). Relict coesite occurs within a bimineralic SiO2 inclusion in garnet. In situ elastic barometry and trace-element thermometry allow reconstruction of the garnet growth history during prograde metamorphism. The data are interpreted to indicate garnet nucleation and crystallization during blueschist- to eclogite-facies subduction zone metamorphism, followed by garnet rim growth at UHP conditions of > 28 kbar and > 530 ° C. Results provide the first direct evidence that rocks of the Appalachian orogen underwent UHP metamorphism to depths of > 75 km and warrant future studies that constrain the extent of UHP metamorphism.


Sign in / Sign up

Export Citation Format

Share Document