Sufficient descent conjugate gradient methods for large-scale optimization problems

2011 ◽  
Vol 88 (16) ◽  
pp. 3436-3447 ◽  
Author(s):  
Xiuyun Zheng ◽  
Hongwei Liu ◽  
Aiguo Lu
2018 ◽  
Vol 7 (2.14) ◽  
pp. 25 ◽  
Author(s):  
Syazni Shoid ◽  
Norrlaili Shapiee ◽  
Norhaslinda Zull ◽  
Nur Hamizah Abdul Ghani ◽  
Nur Syarafina Mohamed ◽  
...  

Many researchers are intended to improve the conjugate gradient (CG) methods as well as their applications in real life. Besides, CG become more interesting and useful in many disciplines and has important role for solving large-scale optimization problems. In this paper, three types of new CG coefficients are presented with application in estimating data. Numerical experiments show that the proposed methods have succeeded in solving problems under strong Wolfe Powell line search conditions. 


Author(s):  
Jie Guo ◽  
Zhong Wan

A new spectral three-term conjugate gradient algorithm in virtue of the Quasi-Newton equation is developed for solving large-scale unconstrained optimization problems. It is proved that the search directions in this algorithm always satisfy a sufficiently descent condition independent of any line search. Global convergence is established for general objective functions if the strong Wolfe line search is used. Numerical experiments are employed to show its high numerical performance in solving large-scale optimization problems. Particularly, the developed algorithm is implemented to solve the 100 benchmark test problems from CUTE with different sizes from 1000 to 10,000, in comparison with some similar ones in the literature. The numerical results demonstrate that our algorithm outperforms the state-of-the-art ones in terms of less CPU time, less number of iteration or less number of function evaluation.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
San-Yang Liu ◽  
Yuan-Yuan Huang ◽  
Hong-Wei Jiao

Two unified frameworks of some sufficient descent conjugate gradient methods are considered. Combined with the hyperplane projection method of Solodov and Svaiter, they are extended to solve convex constrained nonlinear monotone equations. Their global convergence is proven under some mild conditions. Numerical results illustrate that these methods are efficient and can be applied to solve large-scale nonsmooth equations.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 458
Author(s):  
Srimazzura Basri ◽  
Mustafa Mamat ◽  
Puspa Liza Ghazali

Non-linear conjugate gradient methods has been widely used instrumental in solving large scale optimization. These methods has been proved that only required very low memory other than its numerical efficiency. Thus, many studies have been conducted to improve these methods to find the most efficient method. In this paper, we proposed a new non-linear conjugate gradient coefficient that guarantees sufficient descent condition. Numerical tests indicate that the proposed coefficient is better than the three classical conjugate gradient coefficients.


Author(s):  
O.B. Akinduko

In this paper, by linearly combining the numerator and denominator terms of the Dai-Liao (DL) and Bamigbola-Ali-Nwaeze (BAN) conjugate gradient methods (CGMs), a general form of DL-BAN method has been proposed. From this general form, a new hybrid CGM, which was found to possess a sufficient descent property is generated. Numerical experiment was carried out on the new CGM in comparison with four existing CGMs, using some set of large scale unconstrained optimization problems. The result showed a superior performance of new method over majority of the existing methods.


Sign in / Sign up

Export Citation Format

Share Document