A modified Polak–Ribière–Polyak conjugate gradient algorithm for large-scale optimization problems

2014 ◽  
Vol 46 (4) ◽  
pp. 397-413 ◽  
Author(s):  
Gonglin Yuan ◽  
Zengxin Wei ◽  
Qiumei Zhao
Author(s):  
Jie Guo ◽  
Zhong Wan

A new spectral three-term conjugate gradient algorithm in virtue of the Quasi-Newton equation is developed for solving large-scale unconstrained optimization problems. It is proved that the search directions in this algorithm always satisfy a sufficiently descent condition independent of any line search. Global convergence is established for general objective functions if the strong Wolfe line search is used. Numerical experiments are employed to show its high numerical performance in solving large-scale optimization problems. Particularly, the developed algorithm is implemented to solve the 100 benchmark test problems from CUTE with different sizes from 1000 to 10,000, in comparison with some similar ones in the literature. The numerical results demonstrate that our algorithm outperforms the state-of-the-art ones in terms of less CPU time, less number of iteration or less number of function evaluation.


Author(s):  
Gonglin Yuan ◽  
Tingting Li ◽  
Wujie Hu

Abstract To solve large-scale unconstrained optimization problems, a modified PRP conjugate gradient algorithm is proposed and is found to be interesting because it combines the steepest descent algorithm with the conjugate gradient method and successfully fully utilizes their excellent properties. For smooth functions, the objective algorithm sufficiently utilizes information about the gradient function and the previous direction to determine the next search direction. For nonsmooth functions, a Moreau–Yosida regularization is introduced into the proposed algorithm, which simplifies the process in addressing complex problems. The proposed algorithm has the following characteristics: (i) a sufficient descent feature as well as a trust region trait; (ii) the ability to achieve global convergence; (iii) numerical results for large-scale smooth/nonsmooth functions prove that the proposed algorithm is outstanding compared to other similar optimization methods; (iv) image restoration problems are done to turn out that the given algorithm is successful.


Author(s):  
Martin Buhmann ◽  
Dirk Siegel

Abstract We consider Broyden class updates for large scale optimization problems in n dimensions, restricting attention to the case when the initial second derivative approximation is the identity matrix. Under this assumption we present an implementation of the Broyden class based on a coordinate transformation on each iteration. It requires only $$2nk + O(k^{2}) + O(n)$$ 2 n k + O ( k 2 ) + O ( n ) multiplications on the kth iteration and stores $$nK+ O(K^2) + O(n)$$ n K + O ( K 2 ) + O ( n ) numbers, where K is the total number of iterations. We investigate a modification of this algorithm by a scaling approach and show a substantial improvement in performance over the BFGS method. We also study several adaptations of the new implementation to the limited memory situation, presenting algorithms that work with a fixed amount of storage independent of the number of iterations. We show that one such algorithm retains the property of quadratic termination. The practical performance of the new methods is compared with the performance of Nocedal’s (Math Comput 35:773--782, 1980) method, which is considered the benchmark in limited memory algorithms. The tests show that the new algorithms can be significantly more efficient than Nocedal’s method. Finally, we show how a scaling technique can significantly improve both Nocedal’s method and the new generalized conjugate gradient algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xiangrong Li ◽  
Songhua Wang ◽  
Zhongzhou Jin ◽  
Hongtruong Pham

This paper gives a modified Hestenes and Stiefel (HS) conjugate gradient algorithm under the Yuan-Wei-Lu inexact line search technique for large-scale unconstrained optimization problems, where the proposed algorithm has the following properties: (1) the new search direction possesses not only a sufficient descent property but also a trust region feature; (2) the presented algorithm has global convergence for nonconvex functions; (3) the numerical experiment showed that the new algorithm is more effective than similar algorithms.


2018 ◽  
Vol 7 (2.14) ◽  
pp. 25 ◽  
Author(s):  
Syazni Shoid ◽  
Norrlaili Shapiee ◽  
Norhaslinda Zull ◽  
Nur Hamizah Abdul Ghani ◽  
Nur Syarafina Mohamed ◽  
...  

Many researchers are intended to improve the conjugate gradient (CG) methods as well as their applications in real life. Besides, CG become more interesting and useful in many disciplines and has important role for solving large-scale optimization problems. In this paper, three types of new CG coefficients are presented with application in estimating data. Numerical experiments show that the proposed methods have succeeded in solving problems under strong Wolfe Powell line search conditions. 


Sign in / Sign up

Export Citation Format

Share Document