The solution of a second-order nonlinear differential equation with Neumann boundary conditions using semi-orthogonal B-spline wavelets

2006 ◽  
Vol 83 (8-9) ◽  
pp. 685-694 ◽  
Author(s):  
Mehrdad Lakestani ◽  
Mehdi Dehghan
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hongwei Shi ◽  
Yuzhen Bai

AbstractIn this paper, we present several new oscillation criteria for a second order nonlinear differential equation with mixed neutral terms of the form $$ \bigl(r(t) \bigl(z'(t)\bigr)^{\alpha }\bigr)'+q(t)x^{\beta } \bigl(\sigma (t)\bigr)=0,\quad t\geq t_{0}, $$(r(t)(z′(t))α)′+q(t)xβ(σ(t))=0,t≥t0, where $z(t)=x(t)+p_{1}(t)x(\tau (t))+p_{2}(t)x(\lambda (t))$z(t)=x(t)+p1(t)x(τ(t))+p2(t)x(λ(t)) and α, β are ratios of two positive odd integers. Our results improve and complement some well-known results which were published recently in the literature. Two examples are given to illustrate the efficiency of our results.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 469 ◽  
Author(s):  
Azhar Iqbal ◽  
Nur Nadiah Abd Hamid ◽  
Ahmad Izani Md. Ismail

This paper is concerned with the numerical solution of the nonlinear Schrödinger (NLS) equation with Neumann boundary conditions by quintic B-spline Galerkin finite element method as the shape and weight functions over the finite domain. The Galerkin B-spline method is more efficient and simpler than the general Galerkin finite element method. For the Galerkin B-spline method, the Crank Nicolson and finite difference schemes are applied for nodal parameters and for time integration. Two numerical problems are discussed to demonstrate the accuracy and feasibility of the proposed method. The error norms L 2 , L ∞ and conservation laws I 1 ,   I 2 are calculated to check the accuracy and feasibility of the method. The results of the scheme are compared with previously obtained approximate solutions and are found to be in good agreement.


1995 ◽  
Vol 18 (4) ◽  
pp. 823-824 ◽  
Author(s):  
Allan Kroopnick

In this note we present a boundedness theorem to the equationx″+c(t,x,x′)+a(t)b(x)=e(t)wheree(t)is a continuous absolutely integrable function over the nonnegative real line. We then extend the result to the equationx″+c(t,x,x′)+a(t,x)=e(t). The first theorem provides the motivation for the second theorem. Also, an example illustrating the theory is then given.


1999 ◽  
Vol 6 (5) ◽  
pp. 415-420
Author(s):  
John M. Davis ◽  
Paul W. Eloe ◽  
Johnny Henderson

Abstract For the 𝑛th order nonlinear differential equation 𝑦(𝑛)(𝑡) = 𝑓(𝑦(𝑡)), 𝑡 ∈ [0, 1], satisfying the multipoint conjugate boundary conditions, 𝑦(𝑗)(𝑎𝑖) = 0, 1 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ 𝑛𝑖 – 1, 0 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑘 = 1, and , where 𝑓 : ℝ → [0, ∞) is continuous, growth condtions are imposed on 𝑓 which yield the existence of at least three solutions that belong to a cone.


Sign in / Sign up

Export Citation Format

Share Document