Model-order reduction of large-scale second-order MIMO dynamical systems via a block second-order Arnoldi method

2007 ◽  
Vol 84 (7) ◽  
pp. 1003-1019 ◽  
Author(s):  
Yiqin Lin ◽  
Liang Bao ◽  
Yimin Wei
2017 ◽  
Vol 59 (1) ◽  
pp. 115-133
Author(s):  
K. MOHAMED ◽  
A. MEHDI ◽  
M. ABDELKADER

We present a new iterative model order reduction method for large-scale linear time-invariant dynamical systems, based on a combined singular value decomposition–adaptive-order rational Arnoldi (SVD-AORA) approach. This method is an extension of the SVD-rational Krylov method. It is based on two-sided projections: the SVD side depends on the observability Gramian by the resolution of the Lyapunov equation, and the Krylov side is generated by the adaptive-order rational Arnoldi based on moment matching. The use of the SVD provides stability for the reduced system, and the use of the AORA method provides numerical efficiency and a relative lower computation complexity. The reduced model obtained is asymptotically stable and minimizes the error ($H_{2}$and$H_{\infty }$) between the original and the reduced system. Two examples are given to study the performance of the proposed approach.


2011 ◽  
Vol 317-319 ◽  
pp. 2359-2366
Author(s):  
Cong Teng

In this paper, some new algorithms based on diagonal blocks of reachability and observability Gramians are presented for structure preserving model order reduction on second order linear dynamical systems. They are more suitable for large scale systems compared to existing Gramian based algorithms, namely second order balanced truncation methods. In experiments, they have similar performance as the existing techniques.


2018 ◽  
Vol 41 (8) ◽  
pp. 2310-2318 ◽  
Author(s):  
Shafiq Haider ◽  
Abdul Ghafoor ◽  
Muhammad Imran ◽  
Fahad Mumtaz Malik

A new scheme for model order reduction of large-scale second-order systems in time-limited intervals is presented. Time-limited Gramians that are solutions of continuous-time algebraic Lyapunov equations for second-order form systems are introduced. Time-limited second-order balanced truncation procedures with provision of balancing position and velocity Gramians are formulated. Stability conditions for reduced-order models are stated and algorithms that preserve stability in reduced-order models are discussed. Numerical examples are presented to validate the superiority of the proposed scheme compared with the infinite-time Gramians technique for time-limited applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Cong Teng

Some new and simple Gramian-based model order reduction algorithms are presented on second-order linear dynamical systems, namely, SVD methods. Compared to existing Gramian-based algorithms, that is, balanced truncation methods, they are competitive and more favorable for large-scale systems. Numerical examples show the validity of the algorithms. Error bounds on error systems are discussed. Some observations are given on structures of Gramians of second order linear systems.


Sign in / Sign up

Export Citation Format

Share Document