Tracking control of a non-holonomic wheeled mobile robot using improved compound cosine function neural networks

2014 ◽  
Vol 88 (2) ◽  
pp. 364-373 ◽  
Author(s):  
Jun Ye
2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Marcin Szuster ◽  
Zenon Hendzel

Network-based control systems have been emerging technologies in the control of nonlinear systems over the past few years. This paper focuses on the implementation of the approximate dynamic programming algorithm in the network-based tracking control system of the two-wheeled mobile robot, Pioneer 2-DX. The proposed discrete tracking control system consists of the globalised dual heuristic dynamic programming algorithm, the PD controller, the supervisory term, and an additional control signal. The structure of the supervisory term derives from the stability analysis realised using the Lyapunov stability theorem. The globalised dual heuristic dynamic programming algorithm consists of two structures: the actor and the critic, realised in a form of neural networks. The actor generates the suboptimal control law, while the critic evaluates the realised control strategy by approximation of value function from the Bellman’s equation. The presented discrete tracking control system works online, the neural networks’ weights adaptation process is realised in every iteration step, and the neural networks preliminary learning procedure is not required. The performance of the proposed control system was verified by a series of computer simulations and experiments realised using the wheeled mobile robot Pioneer 2-DX.


2021 ◽  
pp. 107754632199918
Author(s):  
Rongrong Yu ◽  
Shuhui Ding ◽  
Heqiang Tian ◽  
Ye-Hwa Chen

The dynamic modeling and trajectory tracking control of a mobile robot is handled by a hierarchical constraint approach in this study. When the wheeled mobile robot with complex generalized coordinates has structural constraints and motion constraints, the number of constraints is large and the properties of them are different. Therefore, it is difficult to get the dynamic model and trajectory tracking control force of the wheeled mobile robot at the same time. To solve the aforementioned problem, a creative hierarchical constraint approach based on the Udwadia–Kalaba theory is proposed. In this approach, constraints are classified into two levels, structural constraints are the first level and motion constraints are the second level. In the second level constraint, arbitrary initial conditions may cause the trajectory to diverge. Thus, we propose the asymptotic convergence criterion to deal with it. Then, the analytical dynamic equation and trajectory tracking control force of the wheeled mobile robot can be obtained simultaneously. To verify the effectiveness and accuracy of this methodology, a numerical simulation of a three-wheeled mobile robot is carried out.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 15592-15602
Author(s):  
Xueshan Gao ◽  
Rui Gao ◽  
Peng Liang ◽  
Qingfang Zhang ◽  
Rui Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document