New criteria for mean square exponential stability of stochastic delay differential equations

Author(s):  
Pham Huu Anh Ngoc
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yanqiang Chang ◽  
Huabin Chen

<p style='text-indent:20px;'>In this paper, the existence and uniquenesss, stability analysis for stochastic delay differential equations with Markovian switching driven by L<inline-formula><tex-math id="M1">\begin{document}$ \acute{e} $\end{document}</tex-math></inline-formula>vy noise are studied. The existence and uniqueness of such equations is simply shown by using the Picard iterative methodology. By using the generalized integral, the Lyapunov-Krasovskii function and the theory of stochastic analysis, the exponential stability in <inline-formula><tex-math id="M2">\begin{document}$ p $\end{document}</tex-math></inline-formula>th(<inline-formula><tex-math id="M3">\begin{document}$ p\geq2 $\end{document}</tex-math></inline-formula>) for stochastic delay differential equations with Markovian switching driven by L<inline-formula><tex-math id="M4">\begin{document}$ \acute{e} $\end{document}</tex-math></inline-formula>vy noise is firstly investigated. The almost surely exponential stability is also applied. Finally, an example is provided to verify our results derived.</p>


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Peiguang Wang ◽  
Yan Xu

In this paper, we study the periodic averaging principle for neutral stochastic delay differential equations with impulses under non-Lipschitz condition. By using the linear operator theory, we deal with the difficulty brought by delay term of the neutral system and obtain the conclusion that the solutions of neutral stochastic delay differential equations with impulses converge to the solutions of the corresponding averaged stochastic delay differential equations without impulses in the sense of mean square and in probability. At last, an example is presented to show the validity of the proposed theories.


Sign in / Sign up

Export Citation Format

Share Document