Low-level atmospheric jets as main mechanism of long-range transport of power plant plumes in the Lake Baikal Region

Author(s):  
Vladimir Arkadievich Obolkin ◽  
Vladimir Lvovich Potemkin ◽  
Vladimir Leonidovich Makukhin ◽  
Ylena Vladimirovna Chipanina ◽  
Irina Iozovna Marinayte
2013 ◽  
Vol 13 (24) ◽  
pp. 12405-12431 ◽  
Author(s):  
P. Kupiszewski ◽  
C. Leck ◽  
M. Tjernström ◽  
S. Sjogren ◽  
J. Sedlar ◽  
...  

Abstract. Unique measurements of vertical size-resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from on board the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Within the lowermost couple hundred metres, transport from the marginal ice zone (MIZ), condensational growth and cloud processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore long-range transport plumes are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, such plumes can influence the radiative balance of the planetary boundary layer (PBL) by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles could be in biological processes, both primary and secondary, within the open leads between the pack ice and/or along the MIZ. In general, local sources, in combination with upstream boundary-layer transport of precursor gases from the MIZ, are considered to constitute the origin of cloud condensation nuclei (CCN) particles and thus be of importance for the formation of interior Arctic low-level clouds during summer, and subsequently, through cloud influences, for the melting and freezing of sea ice.


2013 ◽  
Vol 13 (4) ◽  
pp. 10395-10461 ◽  
Author(s):  
P. Kupiszewski ◽  
C. Leck ◽  
M. Tjernström ◽  
S. Sjogren ◽  
J. Sedlar ◽  
...  

Abstract. Unique measurements of vertical size resolved aerosol particle concentrations, trace gas concentrations and meteorological data were obtained during the Arctic Summer Cloud Ocean Study (ASCOS, http://www.ascos.se), an International Polar Year project aimed at establishing the processes responsible for formation and evolution of low-level clouds over the high Arctic summer pack ice. The experiment was conducted from onboard the Swedish icebreaker Oden, and provided both ship- and helicopter-based measurements. This study focuses on the vertical helicopter profiles and onboard measurements obtained during a three-week period when Oden was anchored to a drifting ice floe, and sheds light on the characteristics of Arctic aerosol particles and their distribution throughout the lower atmosphere. Distinct differences in aerosol particle characteristics within defined atmospheric layers are identified. Near the surface (lowermost couple hundred meters), transport from the marginal ice zone (MIZ), if sufficiently short (less than ca. 2 days), condensational growth and cloud-processing develop the aerosol population. During two of the four representative periods defined in this study, such influence is shown. At altitudes above about 1 km, long-range transport occurs frequently. However, only infrequently does large-scale subsidence descend such air masses to become entrained into the mixed layer in the high Arctic, and therefore they are unlikely to directly influence low-level stratiform cloud formation. Nonetheless, long-range transport plumes can influence the radiative balance of the PBL by influencing formation and evolution of higher clouds, as well as through precipitation transport of particles downwards. New particle formation was occasionally observed, particularly in the near-surface layer. We hypothesize that the origin of these ultrafine particles can be from biological processes, both primary and secondary, within the open leads between the pack ice and/or along the MIZ. In general, local sources, in combination with upstream boundary layer transport of precursor gases from the MIZ, are suggested to constitute the origin of CCN particles and thus be of importance for the formation of interior Arctic low level clouds during summer, and subsequently, through cloud influences, on the melting and freezing of sea ice.


Nature ◽  
1983 ◽  
Vol 305 (5930) ◽  
pp. 122-123 ◽  
Author(s):  
Alan T. Cocks ◽  
Anthony S. Kallend ◽  
Anthony R. W. Marsh

2015 ◽  
Vol 49 ◽  
pp. 282-288 ◽  
Author(s):  
I. N. Urbanavichene

Until recently only two species of Gyalideopsis (G. piceicola and G. alnicola) were known from very few localities in Russia. Gyalideopsis helvetica is reported for the first time for Russia from the southern part of Baikal area (KhamarDaban Range, Baikalsky Zapovednik). Description of the collected specimen and its comparison with the literature data are provided; morphology, ecology and distribution of G. helvetica are discussed. The hyphophores of G. helvetica are recorded and described for the first time. An identification key to Gyalideopsis species known in Russia is provided.


Tellus B ◽  
2011 ◽  
Vol 63 (3) ◽  
Author(s):  
Borgar Aamaas ◽  
Carl Egede Bøggild ◽  
Frode Stordal ◽  
Terje Berntsen ◽  
Kim Holmén ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document