Tool path modification for optimized pocket milling

2007 ◽  
Vol 45 (24) ◽  
pp. 5715-5729 ◽  
Author(s):  
Hyun-Chul Kim
2007 ◽  
Vol 129 (6) ◽  
pp. 1069-1079 ◽  
Author(s):  
M. Sharif Uddin ◽  
Soichi Ibaraki ◽  
Atsushi Matsubara ◽  
Susumu Nishida ◽  
Yoshiaki Kakino

In two-dimensional (2D) free-form contour machining by using a straight (flat) end mill, conventional contour parallel paths offer varying cutting engagement with workpiece, which inevitably causes the variation in cutting loads on the tool, resulting in geometric inaccuracy of the machined workpiece surface. This paper presents an algorithm to generate a new offset tool path, such that the cutting engagement is regulated at a desired level over the finishing path. The key idea of the proposed algorithm is that the semi-finish path, the path prior to the finishing path, is modified such that the workpiece surface generated by the semi-finish path gives the desired engagement angle over the finishing path. The expectation with the proposed algorithm is that by regulating the cutting engagement angle along the tool path trajectory, the cutting force can be controlled at any desirable value, which will potentially reduce variation of tool deflection, thus improving geometric accuracy of machined workpiece. In this study, two case studies for 2D contiguous end milling operations with a straight end mill are shown to demonstrate the capability of the proposed algorithm for tool path modification to regulate the cutting engagement. Machining results obtained in both case studies reveal far reduced variation of cutting force, and thus, the improved geometric accuracy of the machined workpiece contour.


2020 ◽  
Vol 14 (3) ◽  
pp. 459-466 ◽  
Author(s):  
Isamu Nishida ◽  
◽  
Keiichi Shirase

A method to uniquely calculate the tool path and to modify the tool path during air cutting motion to reduce the machining time is proposed. This study presents a contour line model, in which the product model is minutely divided on a plane along an axial direction, and the contour line of the cross-section of the product is superimposed. A method is then proposed to calculate the tool position according to the degree of interference between the product surface and the tool. Furthermore, this study proposes a technique to reduce the machining time by tool path modification during air cutting motion. This is determined by the geometric relationship between the product surface and the tool, and not based on cutting simulations. A cutting experiment was conducted to validate the effectiveness of the proposed method. Based on the results, it was confirmed that the difference in machining time between the tool path with modification and the tool path without modification was large. Moreover, the machining time was significantly reduced by the tool path modification. The results showed that the proposed method has good potential to perform customized manufacturing, and to realize both high productivity and reliability in machining operation.


1999 ◽  
Vol 122 (1) ◽  
pp. 182-190 ◽  
Author(s):  
S. V. Kamarthi ◽  
S. T. S. Bukkapatnam ◽  
S. Hsieh

This paper presents an analytical model of the tool path for staircase traversal of convex polygonal surfaces, and an algorithm—referred to as OPTPATH—developed based on the model to find the sweep angle that gives a near optimal tool path length. The OPTPATH algorithm can be used for staircase traversal with or without (i) overlaps between successive sweep passes, and (ii) rapid traversal along edge passes. This flexibility of OPTPATH renders it applicable not only to conventional operations such as face and pocket milling, but also to other processes such as robotic deburring, rapid prototyping, and robotic spray painting. The effective tool path lengths provided by OPTPATH are compared with those given by the following two algorithms: (i) a common industrial heuristic—referred to as the IH algorithm—and (ii) an algorithm proposed by Prabhu et al. (Prabhu, P. V., Gramopadhye, A. K., and Wang, H. P., 1990, Int. J. Prod. Res., 28, No. 1, pp. 101–130) referred to as PGW algorithm. This comparison is conducted using 100 randomly generated convex polygons of different shapes and a set of seven different tool diameters. It is found that OPTPATH performs better than both the IH as well as PGW algorithms. The superiority of OPTPATH over the two algorithms becomes more pronounced for large tool diameters. [S1087-1357(00)71501-2]


Author(s):  
Shuoxue Sun ◽  
Yuwen Sun ◽  
Yuan-Shin Lee

When a cutter traverses a region local to the singularity in 5-axis machining, the stability of machine tool motion may be violated and inevitably lead to a reduction in machining quality and accuracy. In this paper, the underlying cause of the singular machine behaviors is first investigated by differentiating tool path motions, on the basis of the tool path motion expressions in part and machine coordinate systems. A further investigation indicates abrupt kinematic changes to be inevitable when the rotary axes approach a singularity. To eliminate such possible singular risks in 5-axis machining, a local tool path modification method is proposed by adjusting the two rotary axes out of a singular configuration. The critical kinematics smoothing and the consequent gouging concerns resulting from reorientation are comprehensively incorporated in the process of singularity avoidance, by means of a novel tool orientation optimization model. Specifically, the algorithm starts with the determination of an appropriate adjustment range in a simple yet effective manner, and then the primary rotary axis is adjusted in a constrained region away from zero, so as to avoid singularity. After that, the second rotary axis is accordingly adjusted, with no gouging requirements being violated. In this way, singularity problems in 5-axis machining are solved, and both the machine axes kinematics and surface gouging errors are under control. Machining simulation and laboratory experiments were conducted to validate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document