grey relational analysis
Recently Published Documents


TOTAL DOCUMENTS

1771
(FIVE YEARS 577)

H-INDEX

57
(FIVE YEARS 10)

Author(s):  
Honglin Lv ◽  
Xueye Chen ◽  
Xiangyang Wang ◽  
Xiangwei Zeng ◽  
Yongbiao Ma

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bhanodaya Kiran Babu Nadikudi

Purpose The main purpose of the present work is to study the multi response optimization of dissimilar friction stir welding (FSW) process parameters using Taguchi-based grey relational analysis and desirability function approach (DFA). Design/methodology/approach The welded sheets were fabricated as per Taguchi orthogonal array design. The effects of tool rotational speed, transverse speed and tool tilt angle process parameters on ultimate tensile strength and hardness were analyzed using grey relational analysis, and DFA and optimum parameters combination was determined. Findings The tensile strength and hardness values were evaluated from the welded joints. The optimum values of process parameters were estimated through grey relational analysis and DFA methods. Similar kind of optimum levels of process parameters were obtained through two optimization approaches as tool rotational speed of 1150 rpm, transverse speed of 24 mm/min and tool tilt angle of 2° are the best process parameters combination for maximizing both the tensile strength and hardness. Through these studies, it was confirmed that grey relational analysis and DFA methods can be used to find the multi response optimum values of FSW process parameters. Research limitations/implications In the present study, the FSW is performed with L9 orthogonal array design with three process parameters such as tool rotational speed, transverse speed and tilt angle and three levels. Practical implications Aluminium alloys are widely using in automotive and aerospace industries due to holding a high strength to weight property. Originality/value Very limited work had been carried out on multi objective optimization techniques such as grey relational analysis and DFA on friction stir welded joints made with dissimilar aluminium alloys sheets.


Author(s):  
Razana Alwee ◽  
Siti Mariyam Hj Shamsuddin ◽  
Roselina Sallehuddin

Features selection is very important in the multivariate models because the accuracy of forecasting results produced by the model are highly dependent on these selected features. The purpose of this study is to propose grey relational analysis and support vector regression for features selection. The features are economic indicators that are used to forecast property crime rate. Grey relational analysis selects the best data series to represent each economic indicator and rank the economic indicators according to its importance to the property crime rate. Next, the support vector regression is used to select the significant economic indicators where particle swarm optimization estimates the parameters of support vector regression. In this study, we use unemployment rate, consumer price index, gross domestic product and consumer sentiment index as the economic indicators, as well as property crime rate for the United States. From our experiments, we found that the gross domestic product, unemployment rate and consumer price index are the most influential economic indicators. The proposed method is also found to produce better forecasting accuracy as compared to multiple linear regressions.


2022 ◽  
pp. 1-15
Author(s):  
Zhenxing Peng ◽  
Lina He ◽  
Yushi Xie ◽  
Wenyan Song ◽  
Jue Liu ◽  
...  

A sustainable supply chain (SSC) is vital for company’s sustainability success, so it is imperative to identify and prioritize SSC’s design requirements (DRs) for better SSC planning. For customer-centric markets, the customer requirements (CRs) need to be integrated into SSC’s DRs. This paper thus proposes a customer-centric approach based on Analytic Network Process (ANP), Quality Function Deployment (QFD), Grey Relational Analysis (GRA), and Pythagorean Fuzzy Set (PFS) to rank SSC’s DRs, considering CRs and information ambiguity. The PFS is combined with ANP, QFD, and GRA to better handle uncertainty in the SSC. The Pythagorean fuzzy ANP is applied to analyze the correlations among the sustainable CRs and determine the corresponding weights. The sustainable CRs are transformed into the DRs using the Pythagorean fuzzy QFD. The relationships among the resulting DRs are analyzed through Pythagorean fuzzy GRA to prioritize DRs. The approach is validated through a case study. The results obtained in this paper shows that the proposed method is efficient to prioritize DRs of SSC with the consideration of sustainable CRs under uncertain environment. The novelties of proposed method are that it not only offers a customer-oriented SSC planning method through the integration of ANP, QFD and GRA, but also can reflect the uncertain information with a broader membership representation space via PFSs. Based on the proposed method, the decision-maker can conduct comprehensive analysis to prioritize DRs and design appropriate SSC to fulfill CRs under uncertain environment.


2022 ◽  
Author(s):  
Johnson Kehinde Abifarin ◽  
Fredah Batale Fidelis ◽  
Moshood Yemi Abdulrahim ◽  
Elijah Oyewusi Oyedeji ◽  
Tochukwu Nkwuo ◽  
...  

Abstract Optimization of the manufacturing conditions with more than one performance characteristics have been a thing of concern, especially for Response Surface Method (RSM) optimization. Hence, this study addressed this challenge by reanalyzing a data presented in a previous study using grey relational analysis (GRA) and regression analysis. Central Composite Design (CCD) of RSM with high and low values of manufacturing conditions; voltage (50, 70) V, current (8, 16) A, pulse ON time (6, 10) μs, and pulse OFF time (7, 11) μs. The manufacturing conditions for optimal biomedical Ti-13Zr-13Nb alloy were obtained to be 50V voltage, 8A current, 6 μs pulse ON time, and 11 μs pulse OFF time. It was also revealed that the mathematical model was very efficient because the modeled GRG was in consonant with the experimental one. In addition, it was also established that current was the most significant manufacturing condition with a contribution of 47.27%. Voltage, factors interactions and residual error were insignificant on the GRG value of the titanium alloy. In conclusion, it can be deduced that the a small value of voltage within the considered settings could be used to manufacture better grade Ti-13Zr-13Nb alloy and also the small value of residual error showed the high manufacturability of the material.


2022 ◽  
Vol 72 (1) ◽  
pp. 105-113
Author(s):  
Vikas Marakini ◽  
Srinivasa P Pai ◽  
Uday K Bhat ◽  
Dinesh Thakur Singh ◽  
Bhaskar P Achar

In this study, optimum machining parameters are evaluated for enhancing the surface roughness and hardness of AZ91 alloy using Taguchi design of experiments with Grey Relational Analysis. Dry face milling is performed using cutting conditions determined using Taguchi L9 design and Grey Relational Analysis has been used for the optimization of multiple objectives. Taguchi’s signal-to-noise ratio analysis is also performed individually for both characteristics and grey relational grade to identify the most influential machining parameter affecting them. Further, Analysis of Variance is carried to see the contribution of factors on both surface roughness and hardness. Finally, the predicted trends obtained from the signal-to-noise ratio are validated using confirmation experiments. The study showed the effectiveness of Taguchi design combined with Grey Relational Analysis for the multi-objective problems such as surface characteristics studies.


Sign in / Sign up

Export Citation Format

Share Document