Economic production quantity models for deteriorating items with rework and stochastic preventive maintenance time

2012 ◽  
Vol 50 (11) ◽  
pp. 2940-2952 ◽  
Author(s):  
Hui Ming Wee ◽  
Gede Agus Widyadana
2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Qi Xu ◽  
Jianteng Xu

This paper proposes an economic production quantity problem with the maximal production run time and minimal preventive maintenance time over a finite planning horizon. The objective is to find the efficient production and maintenance policy to minimize the total cost composed of production, maintenance, shortages, and holding costs under the restriction on the production run time and the preventive maintenance time. The production and maintenance decisions include the production and maintenance frequencies and the production run and the maintenance time. The variability and the boundedness of the production run and maintenance time make the problem difficult to solve. Two heuristic algorithms are developed using different techniques based on the optimal properties of the relaxed problem. The performance comparison between the two algorithms is illustrated by numerical examples. The numerical results show that, for the most part, there exists a heuristic algorithm which is more effective than the other.


2011 ◽  
Vol 2 (3) ◽  
pp. 55-90 ◽  
Author(s):  
R. Uthayakumar ◽  
M. Valliathal

This paper discusses an Economic Production Quantity model for Weibull deteriorating items over an infinite time horizon under fuzzy environment. Fuzziness is introduced by allowing the cost components such as setup cost, production cost, holding cost, shortage cost and opportunity cost due to lost sales to certain extent. Triangular fuzzy numbers are used to represent the mentioned costs. Optimum policies of the described models under fuzzy costs are derived. The proposed model can be extended in several ways. For instance, the deterministic demand function to stochastic fluctuating demand patterns could be considered. The model could also be generalized to allow for quantity discounts, as well as permissible delay in payments.


Author(s):  
Y Daryanto ◽  
H.M. Wee

This paper presents an economic production quantity (EPQ) model for deteriorating items with a certain percentage of defective products due to an imperfect process. The defective products are sold to a secondary market at a discount price. Due to environmental concern and carbon tax regulation, the manufacturer incorporates the control of carbon emission cost into its decision model. Carbon emission cost is a function of electricity consumption during production and inventory storage; it is also dependent on the carbon tax rate. Since the production process results in work-in-process inventory and carbon emission, the study tries to optimize the throughput time. We also examine the effect of carbon tax regulation on the potential emission reduction from the developed deteriorating item model. A numerical example and sensitivity analysis have been provided, and the result confirms the influence of carbon tax regulation in reducing carbon emission.


2017 ◽  
Vol 10 (3) ◽  
pp. 431
Author(s):  
Xuejuan Liu ◽  
Binrong Wang

Purpose: We deal with the problem of the joint determination of optimal economic production quantity (EPQ) and optimal preventive maintenance (PM) for a system that can produce multiple products alternately. The objective is to find the optimal number of production cycles and the PM policy simultaneously by minimizing the cost model.Design/methodology/approach: Considering the products go through the system in a sequence and a complete run of all products forms a production cycle. In each cycle, beyond production time we also consider some reserve time for maintenance and setup, shortage and overproduction may occur. We study the integrated problem based on two PM policies, and explain the situation with the other PM policies. The delay – time concept is used to model PM decisions.Findings: Using the integrated EPQ and PM model, we can calculate the optimal production planning and PM schedule simultaneously, especially we consider multiple products in each production cycle, which is more practical and economic than previous works.Originality/value: In modern companies, the production planning and maintenance schedule share the same system, and traditional research about two activities is separated, that always generate conflicts, such as inadequate or excessive maintenance, and shortages, etc., so we develop the integrated EPQ and PM model to avoid these undesirable effects.


Sign in / Sign up

Export Citation Format

Share Document