Adaptive finite-time control for a class of switched nonlinear systems using multiple Lyapunov functions

2016 ◽  
Vol 48 (2) ◽  
pp. 324-336 ◽  
Author(s):  
Mingjie Cai ◽  
Zhengrong Xiang ◽  
Jian Guo
2017 ◽  
Vol 15 (1) ◽  
pp. 1635-1648 ◽  
Author(s):  
Hao Xing ◽  
Leipo Liu ◽  
Xiangyang Cao ◽  
Zhumu Fu ◽  
Shuzhong Song

Abstract This paper considers the guaranteed cost finite-time boundedness of positive switched nonlinear systems with D-perturbation and time-varying delay. Firstly, the definition of guaranteed cost finite-time boundedness is introduced. By using the Lyapunov-Krasovskii functional and average dwell time (ADT) approach, an output feedback controller is designed and sufficient conditions are obtained to ensure the corresponding closed-loop systems to be guaranteed cost finite-time boundedness (GCFTB). Such conditions can be solved by linear programming. Finally, two examples are provided to show the effectiveness of the proposed method.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Ye ◽  
Bin Jiang ◽  
Hao Yang

This paper investigates the problem of global stabilization for a class of switched nonlinear systems using multiple Lyapunov functions (MLFs). The restrictions on nonlinearities are neither linear growth condition nor Lipschitz condition with respect to system states. Based on adding a power integrator technique, we design homogeneous state feedback controllers of all subsystems and a switching law to guarantee that the closed-loop system is globally asymptotically stable. Finally, an example is given to illustrate the validity of the proposed control scheme.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Leipo Liu ◽  
Xiangyang Cao ◽  
Bo Fan ◽  
Zhumu Fu

In this paper, the problem of L1 input-output finite-time control of positive switched nonlinear systems with time-varying and distributed delays is investigated. Nonlinear functions considered in this paper are located in a sector field. Firstly, the proof of the positivity of switched positive nonlinear systems with time-varying and distributed delays is given, and the concept of L1 input-output finite-time stability (L1 IO-FTS) is firstly introduced. Then, by constructing multiple co-positive-type nonlinear Lyapunov functions and using the average dwell time (ADT) approach, a state feedback controller is designed and sufficient conditions are derived to guarantee the corresponding closed-loop system is L1 IO-FTS. Such conditions can be easily solved by linear programming. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document