Variance-constrained filtering for discrete-time genetic regulatory networks with state delay and random measurement delay

2019 ◽  
Vol 50 (2) ◽  
pp. 231-243 ◽  
Author(s):  
Dongyan Chen ◽  
Weilu Chen ◽  
Jun Hu ◽  
Hongjian Liu
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yanfeng Zhao ◽  
Jihong Shen ◽  
Dongyan Chen

We propose an improved stability condition for a class of discrete-time genetic regulatory networks (GRNs) with interval time-varying delays and stochastic disturbances. By choosing an augmented novel Lyapunov-Krasovskii functional which contains some triple summation terms, a less conservative sufficient condition is obtained in terms of linear matrix inequalities (LMIs) by using the combination of the lower bound lemma, the discrete-time Jensen inequality, and the free-weighting matrix method. It is shown that the proposed results can be readily solved by using the Matlab software. Finally, two numerical examples are provided to illustrate the effectiveness and advantages of the theoretical results.


2006 ◽  
Vol 52 (4) ◽  
pp. 524-570 ◽  
Author(s):  
R. Coutinho ◽  
B. Fernandez ◽  
R. Lima ◽  
A. Meyroneinc

2016 ◽  
Vol 71 (4) ◽  
pp. 289-304 ◽  
Author(s):  
R. Sakthivel ◽  
M. Sathishkumar ◽  
B. Kaviarasan ◽  
S. Marshal Anthoni

AbstractThis article addresses the issue of robust finite-time passivity for a class of uncertain discrete-time genetic regulatory networks (GRNs) with time-varying delays and Markovian jumping parameters. By constructing a proper Lyapunov–Krasovskii functional involving the lower and upper bounds of time delays, a new set of sufficient conditions is obtained in terms of linear matrix inequalities (LMIs), which guarantees the finite-time boundedness and finite-time passivity of the addressed GRNs for all admissible uncertainties and satisfies the given passive performance index. More precisely, the conditions are obtained with respect to the finite-time interval, while the exogenous disturbances are unknown but energy bounded. Furthermore, the Schur complement together with reciprocally convex optimisation approach is used to simplify the derivation in the main results. Finally, three numerical examples are provided to illustrate the validity of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document