Non-fragile observer design for discrete-time genetic regulatory networks with randomly occurring uncertainties

2014 ◽  
Vol 90 (1) ◽  
pp. 015205 ◽  
Author(s):  
L Jarina Banu ◽  
P Balasubramaniam
Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Yanfeng Zhao ◽  
Jihong Shen ◽  
Dongyan Chen

We deal with the design problem of nonfragile state estimator for discrete-time genetic regulatory networks (GRNs) with time-varying delays and randomly occurring uncertainties. In particular, the norm-bounded uncertainties enter into the GRNs in random ways in order to reflect the characteristic of the modelling errors, and the so-called randomly occurring uncertainties are characterized by certain mutually independent random variables obeying the Bernoulli distribution. The focus of the paper is on developing a new nonfragile state estimation method to estimate the concentrations of the mRNA and the protein for considered uncertain delayed GRNs, where the randomly occurring estimator gain perturbations are allowed. By constructing a Lyapunov-Krasovskii functional, a delay-dependent criterion is obtained in terms of linear matrix inequalities (LMIs) by properly using the discrete-time Wirtinger-based inequality and reciprocally convex combination approach as well as the free-weighting matrix method. It is shown that the proposed method ensures that the estimation error dynamics is globally asymptotically stable and the desired estimator parameter is designed via the solutions to certain LMIs. Finally, we provide two numerical examples to illustrate the feasibility and validity of the proposed estimation results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Li-Ping Tian ◽  
Zhi-Jun Wang ◽  
Amin Mohammadbagheri ◽  
Fang-Xiang Wu

Genetic regulatory networks are dynamic systems which describe the interactions among gene products (mRNAs and proteins). The internal states of a genetic regulatory network consist of the concentrations of mRNA and proteins involved in it, which are very helpful in understanding its dynamic behaviors. However, because of some limitations such as experiment techniques, not all internal states of genetic regulatory network can be effectively measured. Therefore it becomes an important issue to estimate the unmeasured states via the available measurements. In this study, we design a state observer to estimate the states of genetic regulatory networks with time delays from available measurements. Furthermore, based on linear matrix inequality (LMI) approach, a criterion is established to guarantee that the dynamic of estimation error is globally asymptotically stable. A gene repressillatory network is employed to illustrate the effectiveness of our design approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yanfeng Zhao ◽  
Jihong Shen ◽  
Dongyan Chen

We propose an improved stability condition for a class of discrete-time genetic regulatory networks (GRNs) with interval time-varying delays and stochastic disturbances. By choosing an augmented novel Lyapunov-Krasovskii functional which contains some triple summation terms, a less conservative sufficient condition is obtained in terms of linear matrix inequalities (LMIs) by using the combination of the lower bound lemma, the discrete-time Jensen inequality, and the free-weighting matrix method. It is shown that the proposed results can be readily solved by using the Matlab software. Finally, two numerical examples are provided to illustrate the effectiveness and advantages of the theoretical results.


2006 ◽  
Vol 52 (4) ◽  
pp. 524-570 ◽  
Author(s):  
R. Coutinho ◽  
B. Fernandez ◽  
R. Lima ◽  
A. Meyroneinc

2016 ◽  
Vol 71 (4) ◽  
pp. 289-304 ◽  
Author(s):  
R. Sakthivel ◽  
M. Sathishkumar ◽  
B. Kaviarasan ◽  
S. Marshal Anthoni

AbstractThis article addresses the issue of robust finite-time passivity for a class of uncertain discrete-time genetic regulatory networks (GRNs) with time-varying delays and Markovian jumping parameters. By constructing a proper Lyapunov–Krasovskii functional involving the lower and upper bounds of time delays, a new set of sufficient conditions is obtained in terms of linear matrix inequalities (LMIs), which guarantees the finite-time boundedness and finite-time passivity of the addressed GRNs for all admissible uncertainties and satisfies the given passive performance index. More precisely, the conditions are obtained with respect to the finite-time interval, while the exogenous disturbances are unknown but energy bounded. Furthermore, the Schur complement together with reciprocally convex optimisation approach is used to simplify the derivation in the main results. Finally, three numerical examples are provided to illustrate the validity of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document