A circular cylinder in the main-channel/floodplain interface of a compound channel: effect of the shear flow on drag and lift

2019 ◽  
Vol 58 (3) ◽  
pp. 420-433
Author(s):  
Miltiadis Gymnopoulos ◽  
Ana M. Ricardo ◽  
Elsa Alves ◽  
Rui M.L. Ferreira
2018 ◽  
Vol 40 ◽  
pp. 06020
Author(s):  
Miltiadis Gymnopoulos ◽  
Panayotis Prinos ◽  
Elsa Alves ◽  
Rui ML Ferreira

Overbank flow in rivers threatens integrity of built elements located in the floodplain. Elements of infrastructure close to the interface between main channel and floodplain are subjected to complex hydrodynamic actions resulting from the obstruction of the shear flow that develops in that interface. In the current paper, the drag forces and the drag coefficient of building-like structures positioned in the interface are investigated. The experimental setup in Laboratorio Nacional de Engenharia Civil (LNEC) involves the placement of an array of square cylinders on the floodplain of a straight compound channel, next to the interface with the main channel. Three-component instantaneous-velocity recordings were performed by means of Acoustic Doppler Velocimetry (ADV) within the boundaries of a considered fluid-control volume encompassing the array, while uniform-flow conditions were established in the channel. The equation of momentum conservation was applied in its integral form in the fluid control-volume towards estimation of the time-averaged drag force at a certain elevation from the floodplain. The drag coefficient is estimated accounting for the typical shear layer at the main-channel/floodplain interface and is compared with coefficients strictly valid for isolated cylinders.


1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


2018 ◽  
Vol 27 (4) ◽  
pp. 474-488 ◽  
Author(s):  
A. A. Gavrilov ◽  
K. A. Finnikov ◽  
Ya. S. Ignatenko ◽  
O. B. Bocharov ◽  
R. May

2022 ◽  
Author(s):  
Bandita Naik ◽  
Vijay Kaushik ◽  
Munendra Kumar

Abstract The computation of the boundary shear stress distribution in an open channel flow is required for a variety of applications, including the flow resistance relationship and the construction of stable channels. The river breaches the main channel and spills across the floodplain during overbank flow conditions on both sides. Due to the momentum shift between the primary channel and adjacent floodplains, the flow structure in such compound channels becomes complicated. This has a profound impact on the shear stress distribution in the floodplain and main channel subsections. In addition, agriculture and development activities have occurred in floodplain parts of a river system. As a consequence, the geometry of the floodplain changes over the length of the flow, resulting in a converging compound channel. Traditional formulas, which rely heavily on empirical approaches, are ineffective in predicting shear force distribution with high precision. As a result, innovative and precise approaches are still in great demand. The boundary shear force carried by floodplains is estimated by gene expression programming (GEP) in this paper. In terms of non-dimensional geometric and flow variables, a novel equation is constructed to forecast boundary shear force distribution. The proposed GEP-based method is found to be best when compared to conventional methods. The findings indicate that the predicted percentage shear force carried by floodplains determined using GEP is in good agreement with the experimental data compared to the conventional formulas (R2 = 0.96 and RMSE = 3.395 for the training data and R2 = 0.95 and RMSE = 4.022 for the testing data).


Sign in / Sign up

Export Citation Format

Share Document