Drag and Lift Forces Acting on a Sphere in Shear Flow of Power-Law Fluid

2018 ◽  
Vol 27 (4) ◽  
pp. 474-488 ◽  
Author(s):  
A. A. Gavrilov ◽  
K. A. Finnikov ◽  
Ya. S. Ignatenko ◽  
O. B. Bocharov ◽  
R. May
Author(s):  
Youngho Suh ◽  
Changhoon Lee

In this work, we studied the deformation behavior of a droplet under the various flow conditions. The droplet deformation is calculated by a level-set method. In order to determine the acting force on a particle in shear flow field, we propose the feedback forces which can maintain particle position with efficient handling of deformation. Computations were carried out to investigate the deformation behavior of a droplet caused by the surrounding gaseous flow and the effect of the deformation on the droplet characteristics with various dimensionless parameters. Based on the numerical results, we observed that drag and lift forces acting on a droplet depend strongly on the deformation. Also, the present method is proven to be applicable to a three-dimensional deformation of droplet in shear flow, which cannot be properly analyzed by the previous studies. The drag and lift forces obtained from the present numerical method are favorably compared with the data reported in the literature.


1999 ◽  
Vol 384 ◽  
pp. 183-206 ◽  
Author(s):  
RYOICHI KUROSE ◽  
SATORU KOMORI

The drag and lift forces acting on a rotating rigid sphere in a homogeneous linear shear flow are numerically studied by means of a three-dimensional numerical simulation. The effects of both the fluid shear and rotational speed of the sphere on the drag and lift forces are estimated for particle Reynolds numbers of 1[les ]Rep[les ]500.The results show that the drag forces both on a stationary sphere in a linear shear flow and on a rotating sphere in a uniform unsheared flow increase with increasing the fluid shear and rotational speed. The lift force on a stationary sphere in a linear shear flow acts from the low-fluid-velocity side to the high-fluid-velocity side for low particle Reynolds numbers of Rep<60, whereas it acts from the high-velocity side to the low-velocity side for high particle Reynolds numbers of Rep>60. The change of the direction of the lift force can be explained well by considering the contributions of pressure and viscous forces to the total lift in terms of flow separation. The predicted direction of the lift force for high particle Reynolds numbers is also examined through a visualization experiment of an iron particle falling in a linear shear flow of a glycerin solution. On the other hand, the lift force on a rotating sphere in a uniform unsheared flow acts in the same direction independent of particle Reynolds numbers. Approximate expressions for the drag and lift coefficients for a rotating sphere in a linear shear flow are proposed over the wide range of 1[les ]Rep[les ]500.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Fang-Bao Tian

An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.


2021 ◽  
Vol 6 (10) ◽  
Author(s):  
Pengyu Shi ◽  
Roland Rzehak ◽  
Dirk Lucas ◽  
Jacques Magnaudet

2007 ◽  
Vol 570 ◽  
pp. 155-175 ◽  
Author(s):  
KEN-ICHI SUGIOKA ◽  
SATORU KOMORI

Drag and lift forces acting on a spherical water droplet in a homogeneous linear shear air flow were studied by means of a three-dimensional direct numerical simulation based on a marker and cell (MAC) method. The effects of the fluid shear rate and the particle (droplet) Reynolds number on drag and lift forces acting on a spherical droplet were compared with those on a rigid sphere. The results show that the drag coefficient on a spherical droplet in a linear shear flow increases with increasing the fluid shear rate. The difference in the drag coefficient between a spherical droplet and a rigid sphere in a linear shear flow never exceeds 4%. The lift force acting on a spherical droplet changes its sign from a positive to a negative value at a particle Reynolds number of Rep ≃ 50 in a linear shear flow and it acts from the high-speed side to the low-speed side for Rep ≥ 50. The behaviour of the lift coefficient on a spherical droplet is similar to that on a stationary rigid sphere and the change of sign is caused by the decrease of the pressure lift. The viscous lift on a spherical droplet is smaller than that on a rigid sphere at the same Rep, whereas the pressure lift becomes larger. These quantitative differences are caused by the flow inside a spherical droplet.


2011 ◽  
Vol 673 ◽  
pp. 548-573 ◽  
Author(s):  
J. J. DERKSEN ◽  
R. A. LARSEN

Direct numerical simulations of the shear flow over assemblies of uniformly sized, solid spheres attached to a flat wall have been performed using the lattice-Boltzmann method. The random sphere assemblies comprised monolayers, double layers and triple layers. The Reynolds number based on the sphere radius and the overall shear rate was much smaller than 1. The results were interpreted in terms of the drag force (the force in the streamwise direction) and lift force (the force in the wall-normal direction) experienced by the spheres as a function of the denseness of the bed and the depth of the spheres in the bed. The average drag and lift forces decay monotonically as a function of the surface coverage of the spheres in the top layer of the bed. The sphere-to-sphere variation of the drag and lift forces is significant due to interactions between spheres via the interstitial fluid flow.


Sign in / Sign up

Export Citation Format

Share Document