lift forces
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 34)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Ugur Can ◽  
Sakir Bal

In this study, it was aimed to obtain an accurate extrapolation method to compute lift and drag forces of high-speed vessels at full-scale by using CFD (Computational Fluid Dynamics) based GEOSIM (GEOmetrically SIMilar) method which is valid for both fully planing and semi-planing regimes. Athena R/V 5365 bare hull form with a skeg which is a semi-displacement type of high-speed vessel was selected with a model family for hydrodynamic analyses under captive and free to sinkage/trim conditions. Total drag and lift forces have been computed for a generated GEOSIM family of this form at three different model scales and full-scale for Fr = 0.8 by an unsteady RANS (Reynolds Averaged Navier–Stokes) solver. k–ε turbulence model was used to simulate the turbulent flow around the hulls, and both DFBI (Dynamic Fluid Body Interaction) and overset mesh technique were carried out to model the heave and pitch motions under free to sinkage/trim condition. The computational results of the model family were used to get “drag-lift ratio curve” for Athena hull at a fixed Fr number and so the corresponding results at full scale were predicted by extrapolating those of model scales in the form of a non-dimensional ratios of drag-lift forces. Then the extrapolated full-scale results calculated by modified GEOSIM method were compared with those of full-scale CFD and obtained by Froude extrapolation technique. The modified GEOSIM method has been found to be successful to compute the main forces (lift and drag) acting on high-speed vessels as a single coefficient at full scale. The method also works accurately both under fully and semi-planing conditions.


2021 ◽  
Vol 152 (A2) ◽  
Author(s):  
A G W Williams ◽  
M Collu ◽  
M H Patel

The need for high-speed high-payload craft has led to considerable efforts within the marine transport industry towards a vehicle capable of bridging the gap between conventional ships and aircraft. One such concept uses the forward motion of the craft to create aerodynamic lift forces on a wing-like superstructure and hence, reduce the displacement and skin friction. This paper addresses the specific aerodynamic design of multihull for optimal lift production and shows that significant efficiency can be achieved through careful shaping of a ducted hull, with lift-to-drag ratios of nearly 50 for a complete aerodynamic hull configuration. Further analysis is carried out using a hybrid vehicle stability model to determine the effect of such aerodynamic alleviation on a theoretical planing hull. It is found that the resistance can be halved for a fifty metre, three hundred tonne vehicle with aerodynamic alleviation travelling at 70 knots. Results are presented for a candidate vessel.


Author(s):  
Yair Lozano-Hernandez ◽  
Victor G. Sanchcz-Meza ◽  
Carlos A. Castillo-Ortiz ◽  
Hugo Rodriguez-Cortes ◽  
Oscar O. Guitierrez-Frias
Keyword(s):  

2021 ◽  
Vol 6 (10) ◽  
Author(s):  
Pengyu Shi ◽  
Roland Rzehak ◽  
Dirk Lucas ◽  
Jacques Magnaudet

2021 ◽  
Author(s):  
Alan Haywood ◽  
Andrew Ricks ◽  
Bruno Bouckaert ◽  
Julian Hofman

The Dynamic Hull Vane® is an actively controlled version of the Hull Vane®, a patented energy-saving and seakeeping device which consists of a submerged wing mounted on the aft ship. The Hull Vane is positioned in the upward flow aft of the ship, to develop forward thrust and reduce the stern wave. Naiad Dynamics US Inc, is a supplier of ride control systems and has worked with Hull Vane BV to develop the Dynamic Hull Vane®. By enabling the Hull Vane® to rotate, it can produce variable lift forces which when suitably controlled can reduce the pitching motions of a vessel in a seaway. This paper describes some of the research carried out on the AMECRC series 13, a generic fast displacement hull.


Author(s):  
Kirsten E. Zeuner ◽  
Arne Knutzen ◽  
Oliver Granert ◽  
Leif Trampenau ◽  
Alexander Baumann ◽  
...  

2021 ◽  
Author(s):  
Yushu Xie ◽  
Bruce Melville ◽  
Asaad Yahia Shamseldin ◽  
Colin Nicholas Whittaker ◽  
Yifan Yang

2021 ◽  
Vol 25 (11) ◽  
Author(s):  
Donatien Mottin ◽  
Florence Razan ◽  
Frédéric Kanoufi ◽  
Marie-Caroline Jullien

2021 ◽  
Vol 9 (4) ◽  
pp. 435
Author(s):  
Shuyan Wang ◽  
Yu Han ◽  
Shiteng Mao

Inspired by carangiform fish with a high-aspect ratio of the caudal fin’s up-down swing, but also by dolphins with a similar caudal fin’s left-right swing, a robotic fish with a spatial oscillating rigid caudal fin is implemented to optimize propulsion and maneuverability, whose orientation could be transformed to any position of a taper domain. First, three steering-engines were adopted to make the conceptual prototype, and an experimental apparatus for measuring thrust, lift forces, lateral forces and torque was developed. Then, three comparison experiments, respectively corresponding to the three modes of cruise, diving and maneuvering in random space, were conducted to imitate bionic fish’s hydrodynamics. The comparison results of the experiments proved that propelling and maneuvering in any direction could be realized through changing the orientation of the spatial oscillating rigid caudal fin.


Sign in / Sign up

Export Citation Format

Share Document