Code assessment of ATLAS integral effect test simulating main steam-line break accident of an advanced pressurized water reactor

2017 ◽  
Vol 55 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Kyoung-Ho Kang ◽  
Yu-sun Park ◽  
Byoung-Uhn Bae ◽  
Jong-Rok Kim ◽  
Nam-Hyun Choi ◽  
...  
1998 ◽  
Vol 124 (3) ◽  
pp. 284-290 ◽  
Author(s):  
Garry C. Gose ◽  
Thomas J. Downar ◽  
Karl O. Ott

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Jong Chull Jo ◽  
Frederick J. Moody

A numerical analysis has been performed to simulate the transient thermal-hydraulic response to a main steam line break (MSLB) for the secondary side of a steam generator (SG) model equipped with a venturi-type SG outlet flow restrictor at a pressurized water reactor (PWR) plant. To investigate the effects of the flow restrictor on the thermal-hydraulic response of SG to the MSLB, numerical calculation results for the SG model equipped with the flow restrictor are compared to those obtained for an SG model without the restrictor. Both analysis models contain internal structures. The present computational fluid dynamics (CFD) model has been examined by comparing to a simple analytical model. It is confirmed from the comparison that the CFD model simulates the transient response of the SG secondary to the MSLB physically plausibly and minutely. Based on the CFD analysis results for both cases with or without the restrictor, it is seen that the intensities of the steam velocity and dynamic pressure are considerably attenuated in the SG model equipped with the restrictor comparing to the case in the SG model without the restrictor.


Author(s):  
Jong Chull Jo ◽  
Bok Ki Min ◽  
Jae Jun Jeong

This paper presents a validation of a computational fluid dynamics (CFD) analysis method for a numerical simulation of the transient thermal-hydraulic responses of steam generator (SG) secondary side to blowdown following a main steam line break (MSLB) at a pressurized water reactor (PWR). To do this, the CFD analysis method was applied to simulate the same blowdown situation as in an experimental work which was conducted for a simplified SG blowdown model, and the CFD calculation results were compared with the experimental results. As the result, both are in reasonably good agreement with each other. Consequently, the present CFD analysis model has been validated to be applicable for numerical simulations of the transient phase change heat transfer and flow situations in PWR SGs during blowdown.


Author(s):  
Mathias Sta˚lek ◽  
Jo´zsef Ba´na´ti ◽  
Christophe Demazie`re

A Main Steam Line Break (MSLB) is an important transient for Pressurized Water Reactors (PWR) due to the strong positive reactivity introduced by the over-cooling of the core. Since this effect is stronger when the Moderator Temperature Coefficient (MTC) has a large amplitude, a conservative result will be obtained for a high burnup of the fuel due to the more negative MTC late in the cycle. The calculations have been performed at a cycle burnup of 12.9742 GWd/tHM. The Swedish Ringhals-3 PWR is a three loop Westinghouse design, currently with a thermal power of 3000 MW. The PARCS model has 157 fuel assemblies of 8 different types. Four different types of reflector are used. The cross sections, and kinetic data were obtained from CASMO-4 calculations, using a cross section interface developed at the department. There are 24 axial nodes, and 2×2 radial nodes for each assembly. The transient option for calculating the effect of poisoning was used. The PARCS model has been validated against steady-state measurements from Ringhals-3 of the Relative Power Fraction (RPF) and of the core criticality. The RELAP5 model has 157 channels for the core which means that there is a one to one correspondence between the thermal hydraulics model and the neutronics model. There is eight axial nodes. Originally, the intention was to have 24 axial nodes but this proved not to work because of some limitation in RELAP5. There is currently no mixing between the different channels in the core. The feedwater, and turbines are modelled as boundary conditions. The stand-alone RELAP5 model has been validated against steady state measurements from Ringhals-3. A number of different cases were considered. In the first case, both the isolation of the feedwater for the broken loop, and all the control rods were assumed to work properly. For the second case one of the control rods was assumed to be stuck. The stuck rod was located in the fuel assembly with the highest power. This rod has also one of the highest rod worths. In the final case, the feedwater control valve for the broken loop was fully open. None of the cases led to any recriticality. The increase in power for each fuel assembly was also investigated. With the control rod located in the assembly with the highest power, the maximum power increase before scram turned out to be about 25% compared to the initial power.


Sign in / Sign up

Export Citation Format

Share Document