Estimating internal dose coefficients of short-lived radionuclides in accordance with ICRP 2007 recommendations

2019 ◽  
Vol 56 (5) ◽  
pp. 385-393 ◽  
Author(s):  
Kentaro Manabe ◽  
Kaoru Sato ◽  
Fumiaki Takahashi
1997 ◽  
Vol 226 (1-2) ◽  
pp. 109-115
Author(s):  
T. P. Fell ◽  
A. W. Phipps ◽  
G. M. Kendall ◽  
G. N. Stradling

2019 ◽  
Vol 187 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Tae-Eun Kwon ◽  
MinSeok Park ◽  
Gyu-Hwan Jung ◽  
Yoonsun Chung ◽  
Wi-Ho Ha ◽  
...  

Abstract Iodine thyroid blocking (ITB) suppresses the uptake of iodine to the thyroid and reduces internal doses after radioiodine intake; however, its disturbance of thyroid biokinetics causes considerable uncertainty in the use of dosimetric data intended for assessment of unblocked normal thyroid. To more accurately assess internal dose after ITB, practical dosimetry methods were proposed that consider the ITB effect in a dosimetric manner. A method using the ratio of urine excretion to thyroid retention activity was proposed to retrospectively determine individual-specific ITB levels; bioassay functions and dose coefficients corresponding to ITB levels were calculated separately using the latest biokinetic model and fundamental data. Moreover, insensitive measurement points of time, which led to similar results regardless of ITB level, were determined based on the dose per unit content. Proposed insensitive points for inhalation of vapour forms and particulate forms, respectively, were 1.5 days and 2 days after exposure.


2022 ◽  
Vol 122 (1) ◽  
pp. 125-235 ◽  
Author(s):  
Dunstana R. Melo ◽  
Luiz Bertelli ◽  
Shawki A. Ibrahim ◽  
Lynn R. Anspaugh ◽  
André Bouville ◽  
...  

2019 ◽  
Vol 14 ◽  
pp. 03011
Author(s):  
Kentaro Manabe ◽  
Kaoru Sato ◽  
Fumiaki Takahashi

2020 ◽  
Vol 59 (4) ◽  
pp. 663-682
Author(s):  
Vladimir Spielmann ◽  
Wei Bo Li ◽  
Maria Zankl ◽  
Juan Camilo Ocampo Ramos ◽  
Nina Petoussi-Henss

Abstract Radioactive cerium and other lanthanides can be transported through the aquatic system into foodstuffs and then be incorporated by humans. Information on the uncertainty of reported dose coefficients for exposed members of the public is then needed for risk analysis. In this study, uncertainties of dose coefficients due to the ingestion of the radionuclides 141Ce and 144Ce were estimated. According to the schema of internal dose calculation, a general statistical method based on the propagation of uncertainty was developed. The method takes into account the uncertainties contributed by the biokinetic models and by the so-called S values. These S-values were derived by using Monte Carlo radiation transport simulations with five adult non-reference voxel computational phantoms that have been developed at Helmholtz Zentrum München, Germany. Random and Latin hypercube sampling techniques were applied to sample parameters of biokinetic models and S values. The uncertainty factors, expressed as the square root of the 97.5th and 2.5th percentile ratios, for organ equivalent dose coefficients of 141Ce were found to be in the range of 1.2–5.1 and for 144Ce in the range of 1.2–7.4. The uncertainty factor of the detriment-weighted dose coefficient for 141Ce is 2.5 and for 144Ce 3.9. It is concluded that a general statistical method for calculating the uncertainty of dose coefficients was developed and applied to the lanthanide cerium. The dose uncertainties obtained provide improved dose coefficients for radiation risk analysis of humans. Furthermore, these uncertainties can be used to identify those parameters most important in internal dose calculations by applying sensitivity analyses.


2021 ◽  
Vol 64 ◽  
pp. 101182
Author(s):  
Kieran O'Gorman ◽  
Dominique Tanner ◽  
Mariana Sontag-González ◽  
Bo Li ◽  
Frank Brink ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
C. Rääf ◽  
V. Barkauskas ◽  
K. Eriksson Stenström ◽  
C. Bernhardsson ◽  
H. B. L. Pettersson

AbstractThe pure alpha emitter 148Gd may have a significant radiological impact in terms of internal dose to exposed humans in case of accidental releases from a spallation source using a tungsten target, such as the one to be used in the European Spallation Source (ESS). In this work we aim to present an approach to indirectly estimate the whole-body burden of 148Gd and the associated committed effective dose in exposed humans, by means of high-resolution gamma spectrometry of the gamma-emitting radiogadolinium isotopes 146Gd and 153Gd that are accompanied by 148Gd generated from the operation of the tungsten target. Theoretical minimum detectable whole-body activity (MDA) and associated internal doses from 148Gd are calculated using a combination of existing biokinetic models and recent computer simulation studies on the generated isotope ratios of 146Gd/148Gd and 153Gd/148Gd in the ESS target. Of the two gamma-emitting gadolinium isotopes, 146Gd is initially the most sensitive indicator of the presence of 148Gd if whole-body counting is performed within a month after the release, using the twin photo peaks of 146Gd centered at 115.4 keV (MDA < 1 Bq for ingested 148Gd, and < 25 Bq for inhaled 148Gd). The corresponding minimum detectable committed effective doses will be less than 1 µSv for ingested 148Gd, but substantially higher for inhaled 148Gd (up to 0.3 mSv), depending on operation time of the target prior to the release. However, a few months after an atmospheric release, 153Gd becomes a much more sensitive indicator of body burdens of 148Gd, with a minimum detectable committed effective doses ranging from 18 to 77 µSv for chronic ingestion and between 0.65 to 2.7 mSv for acute inhalation in connection to the release. The main issue with this indirect method for 148Gd internal dose estimation, is whether the primary photon peaks from 146 and 153Gd can be detected undisturbed. Preliminary simulations show that nuclides such as 182Ta may potentially create perturbations that could impair this evaluation method, and which impact needs to be further studied in future safety assessments of accidental target releases.


Sign in / Sign up

Export Citation Format

Share Document