alpha emitter
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 46)

H-INDEX

13
(FIVE YEARS 4)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 189
Author(s):  
Konstantin V. Kokov ◽  
Bayirta V. Egorova ◽  
Marina N. German ◽  
Ilya D. Klabukov ◽  
Michael E. Krasheninnikov ◽  
...  

Over the last decade, targeted alpha therapy has demonstrated its high effectiveness in treating various oncological diseases. Lead-212, with a convenient half-life of 10.64 h, and daughter alpha-emitter short-lived 212Bi (T1/2 = 1 h), provides the possibility for the synthesis and purification of complex radiopharmaceuticals with minimum loss of radioactivity during preparation. As a benefit for clinical implementation, it can be milked from a radionuclide generator in different ways. The main approaches applied for these purposes are considered and described in this review, including chromatographic, solution, and other techniques to isolate 212Pb from its parent radionuclide. Furthermore, molecules used for lead’s binding and radiochemical features of preparation and stability of compounds labeled with 212Pb are discussed. The results of preclinical studies with an estimation of therapeutic and tolerant doses as well as recently initiated clinical trials of targeted radiopharmaceuticals are presented.


2022 ◽  
pp. jnumed.121.263230
Author(s):  
Ebrahim S Delpassand ◽  
Izabela Tworowska ◽  
Rouzbeh Esfandiari ◽  
Julien Torgue ◽  
Jason Hurt ◽  
...  

2021 ◽  
Author(s):  
Nadine Mariel Chiera ◽  
Rugard Dressler ◽  
Peter Sprung ◽  
Zeynep Talip ◽  
Dorothea Schumann

Abstract Sixty years after the discovery of 154Dy, the half-life of this pure alpha-emitter was re-measured. 154Dy was radiochemically separated from proton-irradiated tantalum samples. Sector field- and multicollector-inductively coupled plasma mass spectrometry were used to determine the amount of 154Dy retrieved. The disintegration rate of the radio-lanthanide was measured by means of α-spectrometry. The half-life value was determined as (1.33 ± 0.07)∙106 y, with an uncertainty reduced by a factor of ~10 compared to the currently adopted value of (3.0 ± 1.5)∙106 y. This precise half-life value is crucial for the correct estimation of p-process nucleosynthetic reactions in the lanthanide region, as well as for the safe disposal of irradiated target material from spallation facilities. As a first application of the half-life value found in this work, the excitation functions for the production of 154Dy in proton-irradiated Ta, Pb, and W targets were re-evaluated, which found to be in agreement with theoretical calculations.


2021 ◽  
Vol 19 (10) ◽  
pp. 89-94
Author(s):  
Doaa M. Hameed ◽  
Rasha S. Ahmed ◽  
Haidar A. Shamran

The aim of this study is to evaluate the risk of alpha emitter’s concentrations and measure it in human blood. The current study was done in the central laboratory and archaeologist employees of the Iraqi museum; likewise, the study also involved employees in State board of antiquities and heritage and Abd al-karim qasim museum that are located in Baghdad, Iraq. CR-39 Detector was used to measure alpha emitters track density. 60 participants Blood samples were collected in total (30 people in workers and 30 people in controls that were collected from general population). The maximum obtained values of alpha track density were (213.16±7.58 tracks/ mm2) and minimum obtained values (32.61±3.70 tracks/ mm2) in workers group with average of (81.36±3.78 No. of tracks/mm2) and the maximum obtained values of alpha track density were (219.37±6.75 tracks/ mm2) and minimum obtained values (3.02±0.37 tracks/ mm2) in control group with average of (28.45± 2.10 tracks/mm2). The result showed higher alpha emitter concentration in workers compared to the control group. Based on these results, high alpha concentrations to museum workers and archaeologists may have increased risk to DNA damage and cancer compared to non-occupational workers.


2021 ◽  
Vol 2 (4) ◽  
pp. 196-207
Author(s):  
Emanuel Sporer ◽  
Christian B. M. Poulie ◽  
Sture Lindegren ◽  
Emma Aneheim ◽  
Holger Jensen ◽  
...  

Targeted α-therapy (TAT) can eradicate tumor metastases while limiting overall toxicity. One of the most promising α-particle emitters is astatine-211 (211At). However, 211At-carbon bonds are notoriously unstable in vivo and no chelators are available. This hampers its adoption in TAT. In this study, the stability of 211At on the surface of gold nanoparticles (AuNPs) was investigated. The employed AuNPs had sizes in the 25–50 nm range. Radiolabeling by non-specific surface-adsorption in >99% radiochemical yield was achieved by mixing 211At and AuNPs both before and after polyethylene glycol (PEG) coating. The resulting 211At-AuNPs were first challenged by harsh oxidation with sodium hypochlorite, removing roughly 50% of the attached 211At. Second, incubation in mouse serum followed by a customized stability test, showed a stability of >95% after 4 h in serum. This high stability was further confirmed in an in vivo study, with comparison to a control group of free 211At. The AuNP-associated 211At showed low uptake in stomach and thyroid, which are hallmark organs of uptake of free 211At, combined with long circulation and high liver and spleen uptake, consistent with nanoparticle biodistribution. These results support that gold surface-adsorbed 211At has high biological stability and is a potentially useful delivery system in TAT.


Author(s):  
Yuwei Liu ◽  
Tadashi Watabe ◽  
Kazuko Kaneda-Nakashima ◽  
Yoshifumi Shirakami ◽  
Sadahiro Naka ◽  
...  

Abstract Purpose Fibroblast activation protein (FAP), which has high expression in cancer-associated fibroblasts of epithelial cancers, can be used as a theranostic target. Our previous study used 64Cu and 225Ac-labelled FAP inhibitors (FAPI-04) for a FAP-expressing pancreatic cancer xenograft imaging and therapy. However, the optimal therapeutic radionuclide for FAPI needs to be investigated further. In this study, we evaluated the therapeutic effects of beta-emitter (177Lu)-labelled FAPI-46 and alpha-emitter (225Ac)-labelled FAPI-46 in pancreatic cancer models. Methods PET scans (1 h post injection) were acquired in PANC-1 xenograft mice (n = 9) after the administration of [18F]FAPI-74 (12.4 ± 1.7 MBq) for the companion imaging. The biodistribution of [177Lu]FAPI-46 and [225Ac]FAPI-46 were evaluated in the xenograft model (total n = 12). For the determination of treatment effects, [177Lu]FAPI-46 and [225Ac]FAPI-46 were injected into PANC-1 xenograft mice at different doses: 3 MBq (n = 6), 10 MBq (n = 6), 30 MBq (n = 6), control (n = 4) for [177Lu]FAPI-46, and 3 kBq (n = 3), 10 kBq (n = 2), 30 kBq (n = 6), control (n = 7) for [225Ac]FAPI-46. Tumour sizes and body weights were followed. Results [18F]FAPI-74 showed rapid clearance by the kidneys and high accumulation in the tumour and intestine 1 h after administration. [177Lu]FAPI-46 and [225Ac]FAPI-46 also showed rapid clearance by the kidneys and relatively high accumulation in the tumour at 3 h. Both [177Lu]FAPI-46 and [225Ac]FAPI-46 showed tumour-suppressive effects, with a mild decrease in body weight. The treatment effects of [177Lu]FAPI-46 were relatively slow but lasted longer than those of [225Ac]FAPI-46. Conclusion This study suggested the possible application of FAPI radioligand therapy in FAP-expressing pancreatic cancer. Further evaluation is necessary to find the best radionuclide with shorter half-life, as well as the combination with therapies targeting tumour cells directly.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
George Sgouros ◽  
Bin He ◽  
Nitya Ray ◽  
Dale L. Ludwig ◽  
Eric C. Frey

Abstract Background Actinium-225 is an alpha-particle emitter under investigation for use in radiopharmaceutical therapy. To address limited supply, accelerator-produced 225Ac has been recently made available. Accelerator-produced 225Ac via 232Th irradiation (denoted 225/7Ac) contains a low percentage (0.1–0.3%) of 227Ac (21.77-year half-life) activity at end of bombardment. Using pharmacokinetic modeling, we have examined the dosimetric impact of 227Ac on the use of accelerator-produced 225Ac for radiopharmaceutical therapy. We examine the contribution of 227Ac and its daughters to tissue absorbed doses. The dosimetric analysis was performed for antibody-conjugated 225/7Ac administered intravenously to treat patients with hematological cancers. Published pharmacokinetic models are used to obtain the distribution of 225/7Ac-labeled antibody and also the distribution of either free or antibody-conjugated 227Th. Results Based on our modeling, the tissue specific absorbed dose from 227Ac would be negligible in the context of therapy, less than 0.02 mGy/MBq for the top 6 highest absorbed tissues and less than 0.007 mGy/MBq for all other tissues. Compared to that from 225Ac, the absorbed dose from 227Ac makes up a very small component (less than 0.04%) of the total absorbed dose delivered to the 6 highest dose tissues: red marrow, spleen, endosteal cells, liver, lungs and kidneys when accelerator produced 225/7Ac-conjugated anti-CD33 antibody is used to treat leukemia patients. For all tissues, the dominant contributor to the absorbed dose arising from the 227Ac is 227Th, the first daughter of 227Ac which has the potential to deliver absorbed dose both while it is antibody-bound and while it is free. CONCLUSIONS: These results suggest that the absorbed dose arising from 227Ac to normal organs would be negligible for an 225/7Ac-labeled antibody that targets hematological cancer.


Author(s):  
Julie A. Hong ◽  
Martin Brechbiel ◽  
Jeff Buchsbaum ◽  
Christie A. Canaria ◽  
C. Norman Coleman ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Jean-Pierre Pouget ◽  
Julie Constanzo

Targeted alpha therapy (TAT) using alpha particle-emitting radionuclides is in the spotlight after the approval of 223RaCl2 for patients with metastatic castration-resistant prostate cancer and the development of several alpha emitter-based radiopharmaceuticals. It is acknowledged that alpha particles are highly cytotoxic because they produce complex DNA lesions. Hence, the nucleus is considered their critical target, and many studies did not report any effect in other subcellular compartments. Moreover, their physical features, including their range in tissues (<100 μm) and their linear energy transfer (50–230 keV/μm), are well-characterized. Theoretically, TAT is indicated for very small-volume, disseminated tumors (e.g., micrometastases, circulating tumor cells). Moreover, due to their high cytotoxicity, alpha particles should be preferred to beta particles and X-rays to overcome radiation resistance. However, clinical studies showed that TAT might be efficient also in quite large tumors, and biological effects have been observed also away from irradiated cells. These distant effects are called bystander effects when occurring at short distance (<1 mm), and systemic effects when occurring at much longer distance. Systemic effects implicate the immune system. These findings showed that cells can die without receiving any radiation dose, and that a more complex and integrated view of radiobiology is required. This includes the notion that the direct, bystander and systemic responses cannot be dissociated because DNA damage is intimately linked to bystander effects and immune response. Here, we provide a brief overview of the paradigms that need to be revisited.


Sign in / Sign up

Export Citation Format

Share Document