From Nosé–Hoover chain to Nosé–Hoover network: design of non-Hamiltonian equations of motion for molecular-dynamics with multiple thermostats

2010 ◽  
Vol 108 (10) ◽  
pp. 1337-1347 ◽  
Author(s):  
Tetsuya Morishita
2013 ◽  
Vol 444-445 ◽  
pp. 1370-1373
Author(s):  
Wen Hai Gai ◽  
Ran Guo ◽  
Yuan Yuan Liu

Based on the development of nanomaterials and the research on performance parameters of materials, molecular dynamics simulation has been rapid development and application. It is widely found that the material's physical, mechanical and other properties are both closely related to its macroscopic state and microstructure [. In order to explore and understand the nature of the material properties we need to analyze various impact factors including macroscopic, mesoscopic and microscopic. This paper describes the basic concepts and methods of molecular dynamics. The contents are comprised of time step, formulas such as Lagrange equations of motion and Hamiltonian equations of motion. The basic principles and recent developments of molecular dynamics were reviewed.


2019 ◽  
Vol 61 (11) ◽  
pp. 2163
Author(s):  
С.А. Щербинин ◽  
М.Н. Семенова ◽  
А.С. Семенов ◽  
Е.А. Корзникова ◽  
Г.М. Чечин ◽  
...  

AbstractThe dynamics of a three-component nonlinear delocalized vibrational mode in graphene is studied with molecular dynamics. This mode, being a superposition of a root and two one-component modes, is an exact and symmetrically determined solution of nonlinear equations of motion of carbon atoms. The dependences of a frequency, energy per atom, and average stresses over a period that appeared in graphene are calculated as a function of amplitude of a root mode. We showed that the vibrations become periodic with certain amplitudes of three component modes, and the vibrations of one-component modes are close to periodic one and have a frequency twice the frequency of a root mode, which is noticeably higher than the upper boundary of a spectrum of low-amplitude vibrations of a graphene lattice. The data obtained expand our understanding of nonlinear vibrations of graphene lattice.


Author(s):  
Rudranarayan M. Mukherjee ◽  
Kurt S. Anderson ◽  
John Ziegler

In a multigranular approach for modeling molecular dynamics of polymer melts, different sections of the simulation box are modeled at different levels of detail viz. as particles, flexible bodies or rigid bodies. This approach eliminates high frequency localized motion while maintaining low frequency global conformational motion. This allows for longer integration time steps thus decreasing computational time. In this paper, we discuss our efforts to develop a consortium of dynamics algorithms capable of efficiently generating and solving the equations of motion at all three levels of modeling on a common software platform. A bead spring model of the polymer melt moving under the influence of truncated Lennard-Jones potential under periodic boundary conditions is pursued. Implementation issues and results from a test case consisting of 32 polymer chains of 16 beads each are presented. The paper also discusses the parallel implementation of this problem using MPI.


Sign in / Sign up

Export Citation Format

Share Document