graphene lattice
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 21)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
Vol 2086 (1) ◽  
pp. 012014
Author(s):  
E Grushevski ◽  
D Savelev ◽  
L Mazaletski ◽  
N Savinski ◽  
D Puhov

Abstract One of the promising ways to produce graphene is the technology of graphite splitting or exfoliation, both by physical or mechanical and chemical, including electrochemical methods. The product of electro exfoliation is nanographite, which is transformed into multigraphene at the subsequent stage of liquid-phase mechanical and ultrasonic disintegration. This approach demonstrates a successful method of obtaining multigraphene from available graphite raw materials. Since, already at a potential of 1.23V, during the electrolysis of water on a graphite anode, the hydroxyl anion is discharged with the formation of a very active hydroxyl radical oxidizer, it is not surprising that when the graphite electro exfoliation process is overvolted at 10V, graphite oxidation products are formed. In order to control the defectiveness of the graphene lattice by oxidation products, we carried out processes of graphite exfoliation in the presence of both a number of reducing agents ascorbic acid, sodium borohydride, hydrazine hydrate, and in the presence of industrial antioxidants radical traps (2,2,6,6-tetramethylpiperidine-1-il)oxyl (TEMPO), (2,2,6,6-tetramethyl-4 oxo-piperidine-1-yl)oxyl (IPON), a mixture of 5,8,9-bis isomers[(2,2,6,6-tetramethyl - 4 oxo-piperidine-1-yl)]-{5,8,9-[1,1’- bi(cyclopentylidene)]-2,2’,4,4’- tetraene}(YARSIM-0215). It should be noted, that the best result of preventing the oxidation of nanographite in electro exfoliation technology in our studies is the ratio of carbon to oxygen (C/O) about 69.


Nano Today ◽  
2021 ◽  
Vol 40 ◽  
pp. 101275
Author(s):  
Cordelia Sealy
Keyword(s):  

2021 ◽  
Vol 118 (37) ◽  
pp. e2022201118 ◽  
Author(s):  
Luis Francisco Villalobos ◽  
Cédric Van Goethem ◽  
Kuang-Jung Hsu ◽  
Shaoxian Li ◽  
Mina Moradi ◽  
...  

Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm−2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5080
Author(s):  
Fei Ren ◽  
Mengli Yao ◽  
Min Li ◽  
Hui Wang

Ion implantation is a superior post-synthesis doping technique to tailor the structural properties of materials. Via density functional theory (DFT) calculation and ab-initio molecular dynamics simulations (AIMD) based on stochastic boundary conditions, we systematically investigate the implantation of low energy elements Ga/Ge/As into graphene as well as the electronic, optoelectronic and transport properties. It is found that a single incident Ga, Ge or As atom can substitute a carbon atom of graphene lattice due to the head-on collision as their initial kinetic energies lie in the ranges of 25–26 eV/atom, 22–33 eV/atom and 19–42 eV/atom, respectively. Owing to the different chemical interactions between incident atom and graphene lattice, Ge and As atoms have a wide kinetic energy window for implantation, while Ga is not. Moreover, implantation of Ga/Ge/As into graphene opens up a concentration-dependent bandgap from ~0.1 to ~0.6 eV, enhancing the green and blue light adsorption through optical analysis. Furthermore, the carrier mobility of ion-implanted graphene is lower than pristine graphene; however, it is still almost one order of magnitude higher than silicon semiconductors. These results provide useful guidance for the fabrication of electronic and optoelectronic devices of single-atom-thick two-dimensional materials through the ion implantation technique.


Author(s):  
M. Showkat ◽  
M. A. Shah

In this paper, we use the generalized Dirac structure beyond the linear regime of graphene. This is probed using the a deformation of the Dirac structure in graphene by the generalized uncertainty principle. Here, the Planck length is replaced by the graphene lattice spacing. As the graphene sheet is bounded by two boundaries, we analyze this system with suitable boundary conditions. We solve the perturbed Hamiltonian and derive the wave function for this system. We observe that the energy of this system gets corrected due to this deformation. We explicitly calculate these corrections to the energy of this system.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mahsa Alimohammadian ◽  
Beheshteh Sohrabi

AbstractSince the production of ferromagnetic graphene as an extremely important matter in spintronics has made a revolution in future technology, a great deal of efforts has recently been done to reach a simple and cost-effective method. Up to now, controlling the magnetic properties at extremely low temperature have been investigated only by adding and removing atoms in graphene lattice. In this regard, the effect of strain on the magnetic and electronic properties of graphene has been probed. Here, the ferromagnetic properties are what have been created by strain, magnetic field, and temperature along with observation of the parallel magnetic domains in ferromagnetic graphene for the first time as a great achievement. In this way, we have represented the following: First, introducing three novel methods based on temperature, magnetic field, and strain for producing ferromagnetic graphene; Second, obtaining ferromagnetic graphene at room temperature by significant magnetization saturation in mass-scale; Third, probing the electronic systems and vibrational modes by Raman and IR spectroscopy; Fourth, introducing stacking and aggregation as two types of gathering process for graphene sheets; Fifth, comparing the results with leidenfrost effect-based method which the temperature, magnetic fields, and strain are simultaneously applied to graphene flakes (our previous work).


Small Methods ◽  
2020 ◽  
Vol 4 (5) ◽  
pp. 1900817
Author(s):  
Jörg Kröger ◽  
Nicolas Néel ◽  
Tim Oliver Wehling ◽  
Mads Brandbyge

2020 ◽  
Vol 6 (7) ◽  
pp. eaay5225 ◽  
Author(s):  
Basudev Pradhan ◽  
Sonali Das ◽  
Jinxin Li ◽  
Farzana Chowdhury ◽  
Jayesh Cherusseri ◽  
...  

Organic-inorganic halide perovskite quantum dots (PQDs) constitute an attractive class of materials for many optoelectronic applications. However, their charge transport properties are inferior to materials like graphene. On the other hand, the charge generation efficiency of graphene is too low to be used in many optoelectronic applications. Here, we demonstrate the development of ultrathin phototransistors and photonic synapses using a graphene-PQD (G-PQD) superstructure prepared by growing PQDs directly from a graphene lattice. We show that the G-PQDs superstructure synchronizes efficient charge generation and transport on a single platform. G-PQD phototransistors exhibit excellent responsivity of 1.4 × 108 AW–1 and specific detectivity of 4.72 × 1015 Jones at 430 nm. Moreover, the light-assisted memory effect of these superstructures enables photonic synaptic behavior, where neuromorphic computing is demonstrated by facial recognition with the assistance of machine learning. We anticipate that the G-PQD superstructures will bolster new directions in the development of highly efficient optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document