The adsorption of hydrogen on B36Li2+6 and the non-covalent interaction between them

2021 ◽  
pp. e1892847
Author(s):  
Yue-Hong Yin ◽  
Ji-Wen Li
1991 ◽  
Vol 56 (11) ◽  
pp. 2306-2312 ◽  
Author(s):  
Anjum Muzaffar ◽  
Ernest Hamel ◽  
Rouli Bai ◽  
Arnold Brossi

Synthesis of isothiocyanato substituted thiocolchicines XI - XIV is described. Introduction of an isotope label is demonstrated with the deuterated isothiocyanate XII and the 14C-labeled analog XIII. These isothiocyanates inhibit tubulin polymerization at low concentration. In addition, the 14C-labeled XIII forms covalent bond(s) with tubulin. Unfortunately, the covalent reaction while rapid, is not inhibited by preincubation of tubulin with colchicine. The covalent interaction of XIII with tubulin thus appears to be nonspecific, limiting its use as a marker of the colchicine binding site on tubulin.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3401
Author(s):  
Tsai I-Ting ◽  
M. Merced Montero-Campillo ◽  
Ibon Alkorta ◽  
José Elguero ◽  
Manuel Yáñez

Intramolecular interactions are shown to be key for favoring a given structure in systems with a variety of conformers. In ortho-substituted benzene derivatives including a beryllium moiety, beryllium bonds provide very large stabilizations with respect to non-bound conformers and enthalpy differences above one hundred kJ·mol−1 are found in the most favorable cases, especially if the newly formed rings are five or six-membered heterocycles. These values are in general significantly larger than hydrogen bonds in 1,2-dihidroxybenzene. Conformers stabilized by a beryllium bond exhibit the typical features of this non-covalent interaction, such as the presence of a bond critical point according to the topology of the electron density, positive Laplacian values, significant geometrical distortions and strong interaction energies between the donor and acceptor quantified by using the Natural Bond Orbital approach. An isodesmic reaction scheme is used as a tool to measure the strength of the beryllium bond in these systems in terms of isodesmic energies (analogous to binding energies), interaction energies and deformation energies. This approach shows that a huge amount of energy is spent on deforming the donor–acceptor pairs to form the new rings.


2019 ◽  
Vol 7 ◽  
Author(s):  
Pengju Wang ◽  
Ruili Shi ◽  
Yan Su ◽  
Lingli Tang ◽  
Xiaoming Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document