bond critical point
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Zeki Büyükmumcu ◽  
Sema OZTURK YILDIRIM ◽  
Gökalp Çetin ◽  
Rahime Şimşek ◽  
Ray J. Butcher

Abstract Inflammation is the underlying cause of many diseases such as cardiovascular diseases, cancer and autoimmune diseases. Recently 1,4-dihydropyridine (1,4-DHP) compounds were found effective to reduce inflammation which contributes to development of inflammation associated diseases. Based on these data we synthesized to investigate this type of action of annulated 1,4-DHP molecule, benzyl 4-(2-fluoro-4-(trifluoromethyl)phenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate and proved the structure of this molecule by IR, 1H-NMR, 13C-NMR, HMRS and X-ray crystallography.X-ray analyses were conducted to find out the exact 3D structure of the mentioned molecule. The molecular structure crystallizes in triclinic space group, P-1, with a = 7.0889(11) Å, b = 12.4861(18) Å, c = 14.338(2) Å, α = 66.899(4)°, β = 89.025(4)°, γ = 85.101(4)° and V = 1162.9(3) Å3. In the title molecule, C27H25F4NO3, the cyclohexene ring is in a sofa conformation and the 1,4-dihydropyridine ring is in a slight boat conformation. In the 2-fluoro phenyl and benzyl rings form a dihedral angle of 13.6(1)°. In the crystal structure stabilized by the intra- and intermolecular N—H···O, C—H···O and C—H···F interactions. The molecules are linked together to form a dimer by N(1)—H(1N) ···O(1)i and C(2)—H(2A) ···O(1)i hydrogen bonds [symmetry code: (i) x+1,y,z ], producing two R12(6) rings.Natural charge, QTAIM, bond order, molecular planarity and molecular surface analyses have been performed on the optimized geometry by DFT. Considering the quantities obtained at the bond critical poins, the chemical bonds are discussed for classification. The correlation between bond critical point quantities and the bond orders based on different definitions have been explored considering different bond order models from the literature. The Laplacian Bond Order (LBO) gives best correlation for four of five bond order models. All the bond order models with an exception of the model with parameter G have approximately same correlation degree for C-C bonds. For C-H bonds, only bond model with parameters of electron density and the principle curvatures for LBO gives relatively good correlation with R2 value of 0.943. The two phenyl rings of the structure have aromaticity comparable to benzene as deduced from QTAIM quantities and molecular planarity metrics. As a result of molecular surface analysis, the mass density, molecular polarity index, v (the measure of charge balance), σ2tot .v (measure of intermolecular interactions) were calculated and compared with literature values.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2639
Author(s):  
Pingping Jiang ◽  
Pascal Boulet ◽  
Marie-Christine Record

This paper reports a Density Functional Theory (DFT) investigation of the electron density and optoelectronic properties of two-dimensional (2D) MX2 (M = Mo, W and X = S, Se, Te) subjected to biaxial strains. Upon strains ranging from −4% (compressive strain) to +4% (tensile strain), MX2 bilayers keep the same bandgap type but undergo a non-symmetrical evolution of bandgap energies and corresponding effective masses of charge carriers (m*). Despite a consistency regarding the electronic properties of Mo- and WX2 for a given X, the strain-induced bandgap shrinkage and m* lowering are strong enough to alter the strain-free sequence MTe2, MSe2, MS2, thus tailoring the photovoltaic properties, which are found to be direction dependent. Based on the quantum theory of atoms in molecules, the bond degree (BD) at the bond critical points was determined. Under strain, the X-X BD decreases linearly as X atomic number increases. However, the kinetic energy per electron G/ρ at the bond critical point is independent of strains with the lowest values for X = Te, which can be related to the highest polarizability evidenced from the dielectric properties. A cubic relationship between the absolute BD summation of M-X and X-X bonds and the static relative permittivity was observed. The dominant position of X-X bond participating in this cubic relationship in the absence of strain was substantially reinforced in the presence of strain, yielding the leading role of the X-X bond instead of the M-X one in the photovoltaic response of 2D MX2 material.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Emmanuel A. Bisong ◽  
Hitler Louis ◽  
Tomsmith O. Unimuke ◽  
Victoria M. Bassey ◽  
John A. Agwupuye ◽  
...  

Abstract This research work focuses on the reactivity, stability, and electronic interaction of pyridinium hydrogen nitrate (PHN)-based ionic liquids and the influence of methyl substituent on this class of ionic liquids: Ortho- (O-MPHN), meta- (M-MPHN), and para- (P-MPHN) substitution. Natural bond orbital (NBO) calculations were performed at the density functional theory (DFT) with Becke’s Lee Yang and Parr functional (B3LYP) methods and DFT/B3LYP/6-311++G(d,p) as basis set using GAUSSIAN 09W and GAUSSVIEW 6.0 software and the most important interaction between donor (Filled Lewis-type NBO’s) and the acceptor (vacant non-Lewis NBOs) were observed. From our natural bond orbital (NBO) result, it could be deduced that the higher the stabilization energy value, the greater the interaction between the donor and acceptor NBOs. The stability of the studied compounds is said to follow the order from O-MPHN > PHN > P-MPHN > M-MPHN based on the hyperconjugative interaction (stabilization energy) of the most significant interaction. The result of the highest occupied molecular orbital (HOMO), shows that PHN has the highest HOMO while the substituted derivatives have similar HOMO values between −7.70 and −7.98 eV thus PHN complex is the best electron donor while the substituted derivatives act as electron acceptors due to the presence of methyl group substituent which is observed to be electron deficient as a result of its withdrawal effect from the aromatic ring. Furthermore, the electron density, real space functions such as energy density and Laplacian of electron density at bond critical point (BCP) of the hydrogen bond interaction of the studied compounds were analyzed using Multifunctional Wavefunction analyzer software version 3.7 and it was observed that the hydrogen at position 6 and oxygen at position 11 (H6–O11) of M-methyl pyridinium nitrate with bond distance of 4.59 (Å) gave binding energy with the strongest electrostatic interaction between the cation and anion of the compounds under investigation. We also observed from our results that, substitution at the ortho position enhances the stability and strengthen the extent of charge transfer. This therefore implies that substitution at ortho position is more favorable for inter- and intramolecular interactions resulting to stabilization of the studied molecules.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Razieh Razavi ◽  
Savaş Kaya ◽  
Mahboobeh Zahedifar ◽  
Sayed Ali Ahmadi

AbstractIn the present study, corrosion inhibition performances of some pyrazolo [3,4-b] quinoline-3,5-dione derivatives against the corrosion of copper metal were investigated using B3LYP/6-311++g(d,p) calculation level in aqueous media. Additionally, interaction energies were calculated for all the pyrazoloquinoline derivatives compounds. In the calculations it is observed that studied molecules adsorb on metal surface with the help of electron donor heteroatoms in their molecular structures. Chemical thermodynamic parameters regarding the interaction between inhibitor molecule and copper surface were estimated and discussed. Density of the electron profile analysis and chemical electrostatic potential of nuclear charges in the molecule were applied to consider the nature of a number of probable interactions between Cu metal surface and inhibitors in terms of bond critical point (BCP). Calculated quantum chemical parameters showed that the pyrazoloquinoline derivatives including the OH and NO2 exhibit high inhibition performance.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3401
Author(s):  
Tsai I-Ting ◽  
M. Merced Montero-Campillo ◽  
Ibon Alkorta ◽  
José Elguero ◽  
Manuel Yáñez

Intramolecular interactions are shown to be key for favoring a given structure in systems with a variety of conformers. In ortho-substituted benzene derivatives including a beryllium moiety, beryllium bonds provide very large stabilizations with respect to non-bound conformers and enthalpy differences above one hundred kJ·mol−1 are found in the most favorable cases, especially if the newly formed rings are five or six-membered heterocycles. These values are in general significantly larger than hydrogen bonds in 1,2-dihidroxybenzene. Conformers stabilized by a beryllium bond exhibit the typical features of this non-covalent interaction, such as the presence of a bond critical point according to the topology of the electron density, positive Laplacian values, significant geometrical distortions and strong interaction energies between the donor and acceptor quantified by using the Natural Bond Orbital approach. An isodesmic reaction scheme is used as a tool to measure the strength of the beryllium bond in these systems in terms of isodesmic energies (analogous to binding energies), interaction energies and deformation energies. This approach shows that a huge amount of energy is spent on deforming the donor–acceptor pairs to form the new rings.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2936
Author(s):  
Satoko Hayashi ◽  
Taro Nishide ◽  
Eiichiro Tanaka ◽  
Waro Nakanishi

The intrinsic dynamic and static nature of noncovalent Br-∗-Br interactions in neutral polybromine clusters is elucidated for Br4–Br12, applying QTAIM dual-functional analysis (QTAIM-DFA). The asterisk (∗) emphasizes the existence of the bond critical point (BCP) on the interaction in question. Data from the fully optimized structures correspond to the static nature of the interactions. The intrinsic dynamic nature originates from those of the perturbed structures generated using the coordinates derived from the compliance constants for the interactions and the fully optimized structures. The noncovalent Br-∗-Br interactions in the L-shaped clusters of the Cs symmetry are predicted to have the typical hydrogen bond nature without covalency, although the first ones in the sequences have the vdW nature. The L-shaped clusters are stabilized by the n(Br)→σ*(Br–Br) interactions. The compliance constants for the corresponding noncovalent interactions are strongly correlated to the E(2) values based on NBO. Indeed, the MO energies seem not to contribute to stabilizing Br4 (C2h) and Br4 (D2d), but the core potentials stabilize them, relative to the case of 2Br2; this is possibly due to the reduced nuclear–electron distances, on average, for the dimers.


Author(s):  
Satoko Hayashi ◽  
Taro Nishide ◽  
Eiichiro Tanaka ◽  
Waro Nakanishi

The intrinsic dynamic and static nature of the non-covalent Br-*-Br interactions in the neutral polybromine clusters is elucidated for Br4–Br12, applying QTAIM dual functional analysis (QTAIM-DFA). The asterisk (*) emphasizes the existence of the bond critical point (BCP) on the interaction in question. Data from the fully optimized structures correspond to the static nature of interactions. The intrinsic dynamic nature is originated from those of the perturbed structures generated using the coordinates derived from the compliance constants for the interactions and the fully optimized structures. The non-covalent Br-*-Br interactions in the L-shaped clusters of the Cs symmetry are predicted to have the typical hydrogen bond nature without covalency, although the first ones in the sequences have the vdW nature. The L-shaped clusters are stabilized by the n(Br)->σ*(Br–Br) interactions. The compliance constants for the corresponding non-covalent interactions are strongly correlated to the E(2) values based on NBO. Indeed, the MO energies seem not contribute to stabilize Br4 (C2h) and Br4 (D2d), but the core potentials stabilize them, relative to the case of 2Br2, maybe due to the reduced nuclear-electron distances in the average for the dimmers.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2083
Author(s):  
Maxim L. Kuznetsov

Bond energy is the main characteristic of chemical bonds in general and of non-covalent interactions in particular. Simple methods of express estimates of the interaction energy, Eint, using relationships between Eint and a property which is easily accessible from experiment is of great importance for the characterization of non-covalent interactions. In this work, practically important relationships between Eint and electron density, its Laplacian, curvature, potential, kinetic, and total energy densities at the bond critical point as well as bond length were derived for the structures of the [Z–I···Hal]– and [Z–Hal···I]– types bearing halogen bonds and involving iodine as interacting atom(s) (totally 412 structures). The mean absolute deviations for the correlations found were 2.06–4.76 kcal/mol.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 464
Author(s):  
Ilya N. Klyukin ◽  
Yulia S. Vlasova ◽  
Alexander S. Novikov ◽  
Andrey P. Zhdanov ◽  
Konstantin Y. Zhizhin ◽  
...  

This study has focused on the structure, bonding, and reactivity analysis of closo-borate anions [BnHn]2− (n = 5–12). Several descriptors of B–H interactions have been calculated. It has been found that the values of electron density and total energy at bond critical point are the most useful descriptors for investigation of B–H interactions. Using results from the descriptor analysis, one may conclude that orbital interactions in [BnHn]2− increase with increasing the boron cluster size. Several approaches to estimate atomic charges have been applied. Boron atoms in apical positions have more negative values of atomic charges as compared with atoms from equatorial positions. The mean values of boron and hydrogen atomic charges tend to be more positive with the increasing of boron cluster size. Global and local reactivity descriptors using conceptual density functional theory (DFT) theory have been calculated. Based on this theory, the closo-borate anions [BnHn]2− (n = 5–9) can be considered strong and moderate electrophiles, while the closo-borate anions [BnHn]2− (n = 10–12) can be considered marginal electrophiles. Fukui functions for electrophilic attack have been calculated. Fukui functions correlate well with atomic charges of the closo-borate anions. Boron atoms in apical positions have the most positive values of Fukui functions.


2021 ◽  
Author(s):  
Razieh Razavi ◽  
Mahboobeh Zahedifar ◽  
Sayed Ali Ahmadi

Abstract In the present study, interactions of pyrazolo [3,4-b]quinoline-3,5-dione derivatives on copper metal surface were considered using B3LYP/6-311 + + g(d,p) in water media and also interaction energies were simulated for all the chemical coordination’s of pyrazoloquinoline derivatives compounds. Moreover the original and novel results revealed that in all the chemical side effects and cases, pyrazoloquinoline derivatives compounds were located on the Cu metal surface. This shows that the most important desired direction is where the concentrated numbers of electron donor active atoms of inhibitor molecules interacted with the Cu metal surface atom. Furthermore the chemical Thermodynamic parameters were estimated for example: ∆G of chemical inhibitor complexes with the Cu metal surface. Density of the electron profile analysis and chemical electrostatic potential of nuclear charges in the molecule were applied to consider the nature of a number of probable interactions between Cu metal surface and inhibitors in terms of bond critical point (BCP). Finally chemical electronics parameters showed that the OH and NO2 pyrazoloquinoline derivatives have best interaction in chemical and surface media.


Sign in / Sign up

Export Citation Format

Share Document