fe2o3 nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

995
(FIVE YEARS 363)

H-INDEX

65
(FIVE YEARS 15)

2021 ◽  
Vol 23 (1) ◽  
pp. 50
Author(s):  
Sebastian Lalik ◽  
Olaf Stefańczyk ◽  
Natalia Górska ◽  
Kunal Kumar ◽  
Shin-ichi Ohkoshi ◽  
...  

The aim of our study was to analyze the influence of various concentrations of γ-Fe2O3 nanoparticles on the physical properties of the liquid crystalline ferroelectric SmC* phase, as well as to check the effect of introducing nanoparticles in the LC matrix on their properties in the prepared five nanocomposites. UV-vis spectroscopy showed that the admixture reduced the absorption of nanocomposites in the UV range, additional absorption bands appeared, and all nanocomposites were transparent in the range of 500–850 nm. The molecular dynamics in particular phases of the nanocomposites were investigated by the dielectric spectroscopy method, and it was found that nanoparticles caused a significant increase in the dielectric constant at low frequencies, a strong modification of the dielectric processes in the SmC* phase, and the emergence of new relaxation processes for the highest dopant concentrations. SQUID magnetometry allowed us to determine the magnetic nature of the nanoparticles used, and to show that the blocked state of nanoparticles was preserved in nanocomposites (hysteresis loops were also registered in the ferroelectric SmC* phase). The dependence of the coercive field on the admixture concentration and the widening of the hysteresis loop in nanocomposites in relation to pure nanoparticles were also found. In turn, the FT-MIR spectroscopy method was used to check the influence of the impurity concentration on the formation/disappearance or modification of the absorption bands, and the modification of both the FWHM and the maximum positions for the four selected vibrations in the MIR range, as well as the discontinuous behavior of these parameters at the phase transitions, were found.


2021 ◽  
Vol 10 ◽  
pp. 2014
Author(s):  
Maryam Mollaei ◽  
Mehrdad Hashemi ◽  
Elham Siasi ◽  
Sayeh Jafari Marandi ◽  
Malihe Entezari

Background: Testicular function depends on temperature, and it has been shown that scrotal hyperthermia causes a sharp decrease in sperm parameters due to oxidative stress. In recent years, the use of natural materials from the plant and nanoparticles has attracted much attention. Therefore, the present study aimed to investigate the effect of curcumin and Fe2O3 nanoparticles on sperm parameters in rats. Materials and Methods: After preparing the rats, they were placed in a hot water bath at 43°C for 30 minutes for six consecutive days. The 48 rats were then divided into eight groups. A concentration of 0.03 mg/kg body weight magnetic Fe2O3 nanoparticles and curcumin at the concentration of 0.02 mg/kg body weight were used. After killing animals, the semen parameters such as viability, concentration, motility, and morphology of sperm were studied. Results: Significant differences were observed in all groups of rats in terms of semen parameters (P<0.001). The results showed a positive effect of curcumin on improving semen parameters in scrotal hyperthermia rats and a negative and toxic effect of Fe2O3 magnetic nanoparticles. However, significant improvement in sperm parameters was observed when Fe2O3 magnetic nanoparticles were given to rats along with curcumin. Conclusion: Curcumin has a positive and significant effect on improving sperm parameters in scrotal hyperthermia conditions. Fe2O3 magnetic nanoparticles, if co-administered with curcumin, can significantly improve sperm parameters. In this regard, green synthesis of nanoparticles and concomitant administration of antioxidants such as curcumin in scrotal hyperthermia conditions is recommended. [GMJ.2021;10:e2014]


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1509
Author(s):  
Yuzheng Lu ◽  
Naila Arshad ◽  
Muhammad Sultan Irshad ◽  
Iftikhar Ahmed ◽  
Shafiq Ahmad ◽  
...  

A facile approach for developing an interfacial solar evaporator by heat localization of solar-thermal energy conversion at water-air liquid composed by in-situ polymerization of Fe2O3 nanoparticles (Fe2O3@PPy) deposited over a facial sponge is proposed. The demonstrated system consists of a floating solar receiver having a vertically cross-linked microchannel for wicking up saline water. The in situ polymerized Fe2O3@PPy interfacial layer promotes diffuse reflection and its rough black surface allows Omni-directional solar absorption (94%) and facilitates efficient thermal localization at the water/air interface and offers a defect-rich surface to promote heat localization (41.9 °C) and excellent thermal management due to cellulosic content. The self-floating composite foam reveals continuous vapors generation at a rate of 1.52 kg m−2 h−1 under one 1 kW m−2 and profound evaporating efficiency (95%) without heat losses that dissipates in its surroundings. Indeed, long-term evaporation experiments reveal the negligible disparity in continuous evaporation rate (33.84 kg m−2/8.3 h) receiving two sun solar intensity, and ensures the stability of the device under intense seawater conditions synchronized with excellent salt rejection potential. More importantly, Raman spectroscopy investigation validates the orange dye rejection via Fe2O3@PPy solar evaporator. The combined advantages of high efficiency, self-floating capability, multimedia rejection, low cost, and this configuration are promising for producing large-scale solar steam generating systems appropriate for commercial clean water yield due to their scalable fabrication.


Author(s):  
Kahtan A. Mohammed ◽  
Shaymaa Ahmed Abdulridha ◽  
Esraa H. Aljbory ◽  
Adel H. Omran Alkhayatt ◽  
Rahman S. Zbibah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document