isotope label
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 5)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 292 ◽  
pp. 78-93 ◽  
Author(s):  
Hongrui Zhang ◽  
Sonia Blanco-Ameijeiras ◽  
Brian M. Hopkinson ◽  
Stefano M. Bernasconi ◽  
Luz Maria Mejia ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vitor Marcel Faca ◽  
Ethan J. Sanford ◽  
Jennifer Tieu ◽  
William Comstock ◽  
Shagun Gupta ◽  
...  

Abstract The maintenance of genomic stability relies on DNA damage sensor kinases that detect DNA lesions and phosphorylate an extensive network of substrates. The Mec1/ATR kinase is one of the primary sensor kinases responsible for orchestrating DNA damage responses. Despite the importance of Mec1/ATR, the current network of its identified substrates remains incomplete due, in part, to limitations in mass spectrometry-based quantitative phosphoproteomics. Phosphoproteomics suffers from lack of redundancy and statistical power for generating high confidence datasets, since information about phosphopeptide identity, site-localization, and quantitation must often be gleaned from a single peptide-spectrum match (PSM). Here we carefully analyzed the isotope label swapping strategy for phosphoproteomics, using data consistency among reciprocal labeling experiments as a central filtering rule for maximizing phosphopeptide identification and quantitation. We demonstrate that the approach allows drastic reduction of false positive quantitations and identifications even from phosphopeptides with a low number of spectral matches. Application of this approach identifies new Mec1/ATR-dependent signaling events, expanding our understanding of the DNA damage signaling network. Overall, the proposed quantitative phosphoproteomic approach should be generally applicable for investigating kinase signaling networks with high confidence and depth.


2020 ◽  
Vol 92 (13) ◽  
pp. 9032-9038
Author(s):  
Alexander Zherebker ◽  
Oliver J. Lechtenfeld ◽  
Anastasia Sarycheva ◽  
Yury Kostyukevich ◽  
Oleg Kharybin ◽  
...  

2019 ◽  
Vol 25 (1) ◽  
pp. 58-72
Author(s):  
Evan Perez ◽  
Theodore A Corcovilos ◽  
John K Gibson ◽  
Jonathan Martens ◽  
Giel Berden ◽  
...  

Electrospray ionization was used to generate species such as [ZnNO3(CH3OH)2]+ from Zn(NO3)2•XH2O dissolved in a mixture of CH3OH and H2O. Collision-induced dissociation of [ZnNO3(CH3OH)2]+ causes elimination of CH3OH to form [ZnNO3(CH3OH)]+. Subsequent collision-induced dissociation of [ZnNO3(CH3OH)]+ causes elimination of 47 mass units (u), consistent with ejection of HNO2. The neutral loss shifts to 48 u for collision-induced dissociation of [ZnNO3(CD3OH)]+, demonstrating the ejection of HNO2 involves intra-complex transfer of H from the methyl group methanol ligand. Subsequent collision-induced dissociation causes the elimination of 30 u (32 u for the complex with CD3OH), suggesting the elimination of formaldehyde (CH2 = O). The product ion is [ZnOH]+. Collision-induced dissociation of a precursor complex created using CH3-18OH shows the isotope label is retained in CH2 = O. Density functional theory calculations suggested that the “rearranged” product, ZnOH with bound HNO2 and formaldehyde is significantly lower in energy than ZnNO3 with bound methanol. We therefore used infrared multiple-photon photodissociation spectroscopy to determine the structures of both [ZnNO3(CH3OH)2]+ and [ZnNO3(CH3OH)]+. The infrared spectra clearly show that both ions contain intact nitrate and methanol ligands, which suggests that rearrangement occurs during collision-induced dissociation of [ZnNO3(CH3OH)]+. Based on the density functional theory calculations, we propose that transfer of H, from the methyl group of the CH3OH ligand to nitrate, occurs in concert with the formation of a Zn–C bond. After dissociation to release HNO2, the product rearranges with the insertion of the remaining O atom into the Zn–C bond. Subsequent C–O bond cleavage, with H transfer, produces an ion–molecule complex composed of [ZnOH]+ and O = CH2.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 151 ◽  
Author(s):  
Alexander Triebl ◽  
Markus Wenk

Over the last two decades, lipids have come to be understood as far more than merely components of cellular membranes and forms of energy storage, and are now also being implicated to play important roles in a variety of diseases, with lipid biomarker research one of the most widespread applications of lipidomic techniques both in research and in clinical settings. Stable isotope labelling has become a staple technique in the analysis of small molecule metabolism and dynamics, as it is the only experimental setup by which biosynthesis, remodelling and degradation of biomolecules can be directly measured. Using state-of-the-art analytical technologies such as chromatography-coupled high resolution tandem mass spectrometry, the stable isotope label can be precisely localized and quantified within the biomolecules. The application of stable isotope labelling to lipidomics is however complicated by the diversity of lipids and the complexity of the necessary data analysis. This article discusses key experimental aspects of stable isotope labelling in the field of mass spectrometry-based lipidomics, summarizes current applications and provides an outlook on future developments and potential.


2018 ◽  
Vol 11 (1) ◽  
pp. 49-77 ◽  
Author(s):  
J. Astor Ankney ◽  
Adil Muneer ◽  
Xian Chen

Mass spectrometry–based quantitative proteomics is a powerful tool for gaining insights into function and dynamics of biological systems. However, peptides with different sequences have different ionization efficiencies, and their intensities in a mass spectrum are not correlated with their abundances. Therefore, various label-free or stable isotope label–based quantitation methods have emerged to assist mass spectrometry to perform comparative proteomic experiments, thus enabling nonbiased identification of thousands of proteins differentially expressed in healthy versus diseased cells. Here, we discuss the most widely used label-free and metabolic-, enzymatic-, and chemical labeling–based proteomic strategies for relative and absolute quantitation. We summarize the specific strengths and weaknesses of each technique in terms of quantification accuracy, proteome coverage, multiplexing capability, and robustness. Applications of each strategy for solving specific biological complexities are also presented.


2017 ◽  
Vol 13 (7) ◽  
pp. P1475-P1476
Author(s):  
Vitaliy Ovod ◽  
James G. Bollinger ◽  
Kwasi G. Mawuenyega ◽  
Terry J. Hicks ◽  
Theresa Schneider ◽  
...  

2017 ◽  
Vol 45 (6) ◽  
pp. 624-634 ◽  
Author(s):  
Jiamei Chen ◽  
Lijun Zhu ◽  
Xiaoyan Li ◽  
Haihui Zheng ◽  
Tongmeng Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document