interaction energies
Recently Published Documents


TOTAL DOCUMENTS

1161
(FIVE YEARS 216)

H-INDEX

76
(FIVE YEARS 8)

CrystEngComm ◽  
2022 ◽  
Author(s):  
David Stephen Hughes ◽  
Ann L. Bingham ◽  
Andrew David Bond ◽  
M Hursthouse ◽  
Terence L. Threlfall

A set of 96 crystal structures containing sulfathiazole (SLFZ) is presented, comprising 52 new crystal structures and 39 structures retrieved from the Cambridge Structural Database. The set comprises five polymorphs,...


2021 ◽  
pp. 1-11
Author(s):  
Ali Parkan ◽  
Mahmoud Mirzaei ◽  
Naser Tavakoli ◽  
Alireza Homayouni

Molecular interactions of indomethacin (IND) and amino acids (AA) were investigated in this work by employing the computational approaches. To this aim, the models of IND-AA were stabilized by performing density functional theory (DFT) calculations yielding the most favorable configurations regarding the energy values. Next, the approach of quantum theory of atoms in molecules (QTAIM) was used to recognize the roles of interactions and their significance in the bimolecular models. The results of interaction energies indicate that tryptophan (TRP) and phenylalanine (PHE) could be considered for participating in strong interactions with the IND substance. The results of QTAIM indicated that not only the electronegative atomic centers, but also homo-atomic centers could play significant roles in formations of IND-AA bimolecular models.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7231
Author(s):  
Xiulin An ◽  
Xin Yang ◽  
Qingzhong Li

Ab initio calculations have been performed for the complexes of DMSO and phenyltrifluorosilane (PTS) and its derivatives with a substituent of NH3, OCH3, CH3, OH, F, CHO, CN, NO2, and SO3H. It is necessary to use sufficiently flexible basis sets, such as aug’-cc-pVTZ, to get reliable results for the Si···O tetrel bonds. The tetrel bond in these complexes has been characterized in views of geometries, interaction energies, orbital interactions and topological parameters. The electron-donating group in PTS weakens this interaction and the electron-withdrawing group prominently strengthens it to the point where it exceeds that of the majority of hydrogen bonds. The largest interaction energy occurs in the p-HO3S-PhSiF3···DMSO complex, amounting to −122 kJ/mol. The strong Si···O tetrel bond depends to a large extent on the charge transfer from the O lone pair into the empty p orbital of Si, although it has a dominant electrostatic character. For the PTS derivatives of NH2, OH, CHO and NO2, the hydrogen bonded complex is favorable to the tetrel bonded complex for the NH2 and OH derivatives, while the σ-hole interaction prefers the π-hole interaction for the CHO and NO2 derivatives.


Author(s):  
Regina Matveeva ◽  
Merete Falck Erichsen ◽  
Henrik Koch ◽  
Ida‐Marie Høyvik
Keyword(s):  

2021 ◽  
Author(s):  
Azadeh Jamshidi ◽  
Zeinab Biglari

Abstract The effect of alkali metals (Li, Na and K) interaction on the nonlinear optical response (NLO) of Ga12N12 nanocage has been performed using density functional theory (DFT) calculations. The results show that the exo-M@Ga12N12 structures are energetically favorable with negative interaction energies in the range of ‒1.50 to ‒2.28 eV. The electronic properties of decorated structures are strongly sensitive to interaction with the alkali metals. The HOMO-LUMO gap of Ga12N12 is reduced by about 70% due to the decoration with alkali metals. It is obtained that the adsorption of alkali metals over the tetragonal ring of Ga12N12 nanocage remarkably enhances the first hyperpolarizability up to 6.5×104 au. The results display that decorating Ga12N12 nanocage with alkali metals can be introduced it as a novel inorganic nanomaterial with significant NLO properties.


2021 ◽  
Vol 12 (3) ◽  
pp. 256-264
Author(s):  
Ifeyinwa Stella Ozochukwu ◽  
Obinna Chibueze Okpareke ◽  
David Chukwuma Izuogu ◽  
Akachukwu Ibezim ◽  
Oguejiofo Theophilus Ujam ◽  
...  

A new Schiff base, N'-(pyridin-3-ylmethylene)benzenesulfonohydrazide, was synthesized and characterized by elemental analysis, IR, Mass, 1H NMR and 13C NMR spectroscopy, and single-crystal X-ray determination. The asymmetric molecule crystallized in the monoclinic crystal system and P2(1)/c space group. Crystal data for C12H11N3O2S: a = 9.7547(4) Å, b = 9.8108(4) Å, c = 13.1130(5) Å, β = 109.038(2)°, V = 1186.29(8) Å3, Z = 4, μ(MoKα) = 0.270 mm-1, Dcalc = 1.463 g/cm3, 13338 reflections measured (5.296° ≤ 2Θ ≤ 55.484°), 2790 unique (Rint = 0.0494, Rsigma = 0.0400) which were used in all calculations. The final R1 was 0.0345 (I > 2σ(I)) and wR2 was 0.0914 (all data). In the crystal structure of the compound C12H11N3O2S, molecules are linked in a continuous chain by intermolecular of N∙∙∙HN=N hydrogen bonds. The pyridine moiety is planar, while the benzenesulfonohydrazide group adopts a gauche conformation about C-S-N angle (105.54°). The Hirshfeld surface analysis and fingerprint plots were used to establish the presence, nature, and percentage contribution of the different intermolecular interactions, including N-H∙∙∙N, C-H∙∙∙O, C-H∙∙∙C, and π∙∙∙π interactions, with the C-H contacts having the most significant contribution. The pairwise interaction energies were calculated at the B3LYP/6-31G(d,p) level of theory, and interaction energy profiles showed that the electrostatic forces had the most significant contribution to the total interaction energies of the different molecular pairs in the crystal. In-silico technique was used to examine the compound as a possible anticancer agent. The molecule demonstrated zero violation of the criteria of Lipinski’s rule of five with a polar surface area of 116.03 Å2. The molecule displayed favorable binding interactions with ten selected validated anticancer protein targets ranging from -9.58 to -11.95 kcal/mol and -2.73 to -5.73 kcal/mol on scoring and rescoring, respectively, with London dG and Affinity dG scoring functions. Two proteins; farnesyl transferase and signaling protein, preferred interactions with the Schiff-base over their co-crystallized inhibitors according to London dG scoring. Analysis of binding poses indicated that the Schiff-base made contact with amino acid residues of the two proteins through the N-H, sulphonyl oxygen, and phenyl groups, and this could be exploited in chemical and structural modification towards activity optimization.


Author(s):  
Ebru Çopuroğlu ◽  
Bahtiyar Mamedov

We proposed a general and effective approach for accurate calculating method of the electron-electron, nuclear-electron and nuclear-nuclear Coulomb electrostatic interaction energies. It is well known that electron-electron, nuclear-electron and nuclear-nuclear Coulomb electrostatic interaction energies reduced to basic two-center Coulomb integrals. The analytical calculation of electrostatic interaction energies with respect to basic two-center Coulomb integrals over Slater type orbitals (STOs) in molecular coordinate systems allows us the routine evaluation of molecular structures and related properties. In this study we have introduced a new full analytical algorithm for calculation of the basic two-center Coulomb integrals over STOs by using Guseinov’s auxiliary functions especially interactions between electrons. The auxiliary functions has been calculated by using the exact recurrence relations which developed by Guseinov. The new approach is successfully tested on earlier published studies data and can be recommended for evaluation of related problems in atomic and molecular physics.


2021 ◽  
Vol 22 (19) ◽  
pp. 10484
Author(s):  
Andrzej Patrykiejew

We studied the phase behavior of two-dimensional systems of Janus-like particles on a triangular lattice using Monte Carlo methods. The model assumes that each particle can take on one of the six orientations with respect to the lattice, and the interactions between neighboring particles were weighted depending on the degree to which their A and B halves overlap. In this work, we assumed that the AA interaction was fixed and attractive, while the AB and BB interactions varied.We demonstrated that the phase behavior of the systems considered strongly depended on the magnitude of the interaction energies between the AB and BB halves. Here, we considered systems with non-repulsive interactions only and determined phase diagrams for several systems. We demonstrated that the phase diagram topology depends on the temperature at which the close-packed systems undergo the orientational order–disorder transition.


Sign in / Sign up

Export Citation Format

Share Document