scholarly journals Rheological estimates of rhyolite lava flows from the Okataina Volcanic Centre, New Zealand

1994 ◽  
Vol 37 (2) ◽  
pp. 211-221 ◽  
Author(s):  
R. J. Stevenson ◽  
A. P. W. Hodder ◽  
R. M. Briggs
2016 ◽  
Vol 207 (2) ◽  
pp. 702-718 ◽  
Author(s):  
Annika Greve ◽  
Gillian M. Turner ◽  
Chris E. Conway ◽  
Dougal B. Townsend ◽  
John A. Gamble ◽  
...  

2020 ◽  
Author(s):  
Jenni L. Hopkins ◽  
Janine E. Bidmead ◽  
David J. Lowe ◽  
Richard J. Wysoczanski ◽  
Bradley J. Pillans ◽  
...  

Abstract. Although analyses of tephra-derived glass shards have been undertaken in New Zealand for nearly four decades (pioneered by Paul Froggatt), our study is the first to systematically develop a formal, comprehensive, open access, reference dataset of glass-shard compositions for New Zealand tephras. These data will provide an important reference tool for future studies to identify and correlate tephra deposits and for associated petrological and magma-related studies within New Zealand and beyond. Here we present the foundation dataset for TephraNZ, an open access reference dataset for selected tephra deposits in New Zealand. Prominent, rhyolitic, tephra deposits from the Quaternary were identified, with sample collection targeting original type sites or reference locations where the tephra's identification is unequivocally known based on independent dating or mineralogical techniques. Glass shards were extracted from the tephra deposits and major and trace element geochemical compositions were determined. We discuss in detail the data reduction process used to obtain the results and propose that future studies follow a similar protocol in order to gain comparable data. The dataset contains analyses of twenty-three proximal and twenty-seven distal tephra samples characterising 45 eruptive episodes ranging from Kaharoa (636 ± 12 cal. yrs BP) to the Hikuroa Pumice member (2.0 ± 0.6 Ma) from six or more caldera sources, most from the central Taupō Volcanic Zone. We report 1385 major element analyses obtained by electron microprobe (EMPA), and 590 trace element analyses obtained by laser ablation (LA)-ICP-MS, on individual glass shards. Using PCA, Euclidean similarity coefficients, and geochemical investigation, we show that chemical compositions of glass shards from individual eruptions are commonly distinguished by major elements, especially CaO, TiO2, K2O, FeOt (Na2O+ K2O and SiO2/K2O), but not always. For those tephras with similar glass major-element signatures, some can be distinguished using trace elements (e.g. HFSEs: Zr, Hf, Nb; LILE: Ba, Rb; REE: Eu, Tm, Dy, Y, Tb, Gd, Er, Ho, Yb, Sm), and trace element ratios (e.g. LILE / HFSE: Ba / Th, Ba / Zr, Rb / Zr; HFSE / HREE: Zr / Y, Zr / Yb, Hf / Y; LREE / HREE: La / Yb, Ce / Yb). Geochemistry alone cannot be used to distinguish between glass shards from the following tephra groups: Taupō (Unit Y in the post-Ōruanui eruption sequence of Taupō volcano) and Waimihia (Unit S); Poronui (Unit C) and Karapiti (Unit B); Rotorua and Rerewhakaaitu; and Kawakawa/Ōruanui, Okaia, and Unit L (of the Mangaone subgroup eruption sequence). Other characteristics can be used to separate and distinguish all of these otherwise-similar eruptives except Poronui and Karapiti. Bimodality caused by K2O variability is newly identified in Poihipi and Tahuna tephras. Using glass shard compositions, tephra sourced from Taupō Volcanic Centre (TVC) and Mangakino Volcanic Centre (MgVC) can be separated using bivariate plots of SiO2/K2O vs. Na2O+K2O. Glass shards from tephras derived from Kapenga Volcanic Centre, Rotorua Volcanic Centre, and Whakamaru Volcanic Centre have similar major- and trace-element chemical compositions to those from the MgVC, but can overlap with glass analyses from tephras from Taupō and Okataina volcanic centres. Specific trace elements and trace element ratios have lower variability than the heterogeneous major element and bimodal signatures, making them easier to geochemically fingerprint.


1992 ◽  
Vol 129 (1) ◽  
pp. 1-16 ◽  
Author(s):  
L. Chevallier ◽  
D. C. Rex ◽  
W. J. Verwoerd

AbstractInaccessible Island is the eroded remnant of an extinct, comparatively small intraplate volcano dominated by flows of alkaline olivine basalt. The oldest stratigraphie unit is a hydrothermally altered basement of somewhat questionable early Pliocene (6.5 Ma) age. This is unconformably overlain by a volcanic superstructure built up during the last three million years. The two formations have different trace element signatures that may be attributed to different mantle sources. Boulders of gabbro are common but the presence of an in situ plutonic intrusion could not be confirmed. Their K-Ar age of 12.8 Ma may be spurious and their possible relationship with the volcano is uncertain. Reliable age determinations of 0.95–0.72 Ma were obtained on lava flows of the second volcanic stage, subdivided into four units or stratigraphie members. The latest unit consists of plugs, sills and flows of an evolved magma fraction (benmoreite and trachyte) of which benmoreite is considered to be the more voluminous. Several dyke swarms of different ages reveal the internal structure of the volcano. It is concluded that the main volcanic centre was located immediately offshore to the northwest and that the edifice was attached to an east–west volcanic rift zone. Apart from marine erosion, massive land-sliding probably took part in shaping the island and its submarine platform.


2017 ◽  
Vol 5 ◽  
Author(s):  
Nathan Magnall ◽  
Mike R. James ◽  
Hugh Tuffen ◽  
Charlotte Vye-Brown

Sign in / Sign up

Export Citation Format

Share Document