volcanic centre
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 29)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Annika Greve

<p>In order to understand the origin, temporal behaviour and spatial characteristics of Earth’s magnetic field, globally distributed records of the palaeomagnetic direction and absolute palaeointensity are required. However a paucity of data from the southern hemisphere significantly limits the resolution of global field models, particularly on short time-scales.  In this thesis new, high quality palaeomagnetic data from volcanic materials sampled within the Taupo Volcanic Zone, New Zealand are presented, with a focus on the Tongariro and Okataina Volcanic Centre.  New palaeomagnetic directions were obtained from 19 andesitic or rhyolitic lavas, of which 10 also produced successful palaeointensity results. Palaeointensity experiments were conducted using a combination of traditional Thellier-type thermal, and microwave techniques. Detailed magneto-mineralogical investigations carried out alongside these experiments helped to characterise the primary remanence carriers and to justify the reliability of the results.  The study also revises the age controls and results from earlier palaeomagnetic studies on Holocene volcanic materials from the area. All new or revised data are summarized into a new data compilation for New Zealand, which includes 24 directions and ten palaeointensities dated between 1886 AD and 15,000 yrs BP.  The new directional data reproduces the features of the most recently published continuous record from Lake Mavora (Fiordland, New Zealand), although with directions ranging in their extremes from 321° (west) to 26° (east) declination and -82 to -49° in inclination, the discrete dataset describes somewhat larger amplitude swings.  With few exceptions, the new palaeointensity dataset describes a steady increase in the palaeointensity throughout the Holocene, from 37.0 ± 5.7 μT obtained from a pre-8 ka lava to 70.6 ± 4.1 μT from the youngest (≤ 500 yrs BP) flows sampled. A similar trend is also predicted by the latest global field model pfm9k. Furthermore, the data falls within the range of palaeointensity variation suggested by the Mavora record. The dataset roughly agrees with a global VADM reconstruction in the early Holocene (> 5000 yrs BP), but yields values significantly above the global trend in the late Holocene (< 1000 yrs BP) which supports the presence of significant non-dipolar components over the SW Pacific region in the time period, visible in global field models and from continuous PSV records.  A comparison of the directional records with the Mavora Curve provided refinement of age estimates of five lava flows from the Tongariro Volcanic Centre, from uncertainties in the range of 2-3000 years. The new palaeomagnetic emplacement age estimates for these flows have age brackets as short as 500 years and thus highlight different phases of the young cone building eruptive activity on Ruapehu volcano.</p>


2021 ◽  
Author(s):  
◽  
Annika Greve

<p>In order to understand the origin, temporal behaviour and spatial characteristics of Earth’s magnetic field, globally distributed records of the palaeomagnetic direction and absolute palaeointensity are required. However a paucity of data from the southern hemisphere significantly limits the resolution of global field models, particularly on short time-scales.  In this thesis new, high quality palaeomagnetic data from volcanic materials sampled within the Taupo Volcanic Zone, New Zealand are presented, with a focus on the Tongariro and Okataina Volcanic Centre.  New palaeomagnetic directions were obtained from 19 andesitic or rhyolitic lavas, of which 10 also produced successful palaeointensity results. Palaeointensity experiments were conducted using a combination of traditional Thellier-type thermal, and microwave techniques. Detailed magneto-mineralogical investigations carried out alongside these experiments helped to characterise the primary remanence carriers and to justify the reliability of the results.  The study also revises the age controls and results from earlier palaeomagnetic studies on Holocene volcanic materials from the area. All new or revised data are summarized into a new data compilation for New Zealand, which includes 24 directions and ten palaeointensities dated between 1886 AD and 15,000 yrs BP.  The new directional data reproduces the features of the most recently published continuous record from Lake Mavora (Fiordland, New Zealand), although with directions ranging in their extremes from 321° (west) to 26° (east) declination and -82 to -49° in inclination, the discrete dataset describes somewhat larger amplitude swings.  With few exceptions, the new palaeointensity dataset describes a steady increase in the palaeointensity throughout the Holocene, from 37.0 ± 5.7 μT obtained from a pre-8 ka lava to 70.6 ± 4.1 μT from the youngest (≤ 500 yrs BP) flows sampled. A similar trend is also predicted by the latest global field model pfm9k. Furthermore, the data falls within the range of palaeointensity variation suggested by the Mavora record. The dataset roughly agrees with a global VADM reconstruction in the early Holocene (> 5000 yrs BP), but yields values significantly above the global trend in the late Holocene (< 1000 yrs BP) which supports the presence of significant non-dipolar components over the SW Pacific region in the time period, visible in global field models and from continuous PSV records.  A comparison of the directional records with the Mavora Curve provided refinement of age estimates of five lava flows from the Tongariro Volcanic Centre, from uncertainties in the range of 2-3000 years. The new palaeomagnetic emplacement age estimates for these flows have age brackets as short as 500 years and thus highlight different phases of the young cone building eruptive activity on Ruapehu volcano.</p>


2021 ◽  
Author(s):  
◽  
George Frederick Cooper

<p>This thesis research focuses on clast and crystal-specific studies to investigate the pre- and syn-eruptive magmatic processes of two supereruptions in the TVZ: the 1.21 Ma Ongatiti (>500 km3) and the 1.0 Ma Kidnappers (~1200 km3), together with the smaller (~200 km3) 1.0 Ma Rocky Hill eruption from the Mangakino Volcanic Centre (MVC).  Crystallisation histories determined through SIMS U-Pb dating of zircons reveal that the paired Kidnappers and Rocky Hill eruptions were products of a common magmatic system, which built over ~200 kyr, in the time break after the Ongatiti eruption. U-Pb age spectra from the Ongatiti show a protracted crystallisation history (over ~250 kyr), in which the majority of zircon crystallised ~100 kyr prior to eruption in a crystal mush. Zircons then ascended with melt during accumulation of the final erupted magma body in the shallow crust. Zircons remained stable in the melt dominant body but underwent little further crystallisation. Zircons from all three systems record common geochemical processes governed by the fractionating assemblage (predominantly plagioclase and amphibole). In particular, the MREE/HREE ratios and Sr concentrations of zircons from the Ongatiti record imply two contrasting source regions governed by different proportions of crystallising amphibole.  The in-situ major and trace element chemistry of glass shards and crystals from the Kidnappers fall deposit reveal that magma within the Kidnappers was stored in three discrete bodies, which were systematically tapped during the early stages of eruption. Temperature and pressure (T-P) estimates from amphibole and Fe-Ti oxide equilibria from each magma type are similar and therefore the three magma bodies were adjacent, not vertically stacked, in the crust. Amphibole model T-P estimates range from 770 to 840 °C and 90 to 170 MPa corresponding to pre-eruptive storage depths of ~4.0-6.5 km. The systematic evacuation of the three independent magma bodies implies that there was tectonic triggering and linkage of eruptions. The termination of fall deposition and onset of the overlying ignimbrite emplacement marks the point of widespread caldera collapse and the catastrophic evacuation of a wider variety of melt during the Kidnappers eruption.  Pumice compositions from the Kidnappers ignimbrite fall into three groups, two of which (KI-1 and KI-2) can be matched to bodies tapped during the fall phase of the eruption, with the addition of a further discrete batch of lower SiO2 (KI-3) magma. Core-rim textural and chemical variations in major crystal phases (plagioclase, amphibole and orthopyroxene) suggest each compositional group was sourced from a common mush but underwent a unique magmatic history during the development of melt-dominant bodies in the final stages prior to eruption. The field relationships and distinctive appearance of the Rocky Hill ignimbrite (~200 km3 DRE) and the underlying Kidnappers ignimbrite suggests that the two deposits are from distinct eruption events. However, major and trace element chemistry of matrix glass, coupled with the textural and chemical signatures of crystals suggests the magma erupted during the Rocky Hill was generated from the same source or mush zone as the Kidnappers. The two largest melt-dominant bodies (KI-1 and KI-2) within the Kidnappers were renewed, underwent mixing and incorporation of marginal material to form two magma types (RH-1 and RH-2) in the time break prior to the Rocky Hill eruption.  Fe-Mg interdiffusion timescales in orthopyroxenes from the Kidnappers and Rocky Hill deposits suggest the establishment of the final melt-dominant bodies, through extraction of melt and crystals from a common mush, occurred within 1000 years, and peaked within centuries of each eruption. In addition, one discrete batch of Kidnappers melt has evidence for interaction with a lesser evolved melt within 50 yrs prior to eruption. This rejuvenation event was not the eruption trigger but may have primed the magma for eruption. The difference in timescales from common zones from both the Kidnappers and Rocky Hill orthopyroxene, recording the same processes reveal the time break between the two eruptions was ~20-40 years. This work highlights the rapidity of rejuvenation and renewal of the melt-dominant bodies within the Kidnappers/Rocky Hill magmatic system.  The textural and in-situ compositional signatures of crystals from the Ongatiti ignimbrite imply the final erupted magma body was assembled from a thermally and chemically zoned mush, which extended to the base of the quartzofeldspathic crust (~15km). The mush was close to water saturation and was dominated by amphibole crystallisation. Melt and crystals (including the majority of zircons) were extracted from the mush and ascended to 4-6 km depths during the development of a crystal-rich (20-30%), but melt-dominant body. Significant crystallisation of plagioclase (and lesser proportions of orthopyroxene and amphibole) occurred in an event involving the gradual heating and/or increase of water in the rhyolite, from a broadly andesitic underplated magma. Homogeneous crystal rim and matrix glass compositions imply the final erupted volume of magma was effectively mixed through convection. Eu/Eu* values of whole-rock and matrix glass suggest little crystal-melt separation occurred in the melt-dominant magma body prior to eruption.  This work has implications for understanding the generation, storage and eruption of large-scale silicic magma systems. The Ongatiti ignimbrite does not represent either an erupted mush, or a stratified magma chamber, suggesting an alternative model for the development of eruptible magma within large-scale silicic systems. The Kidnappers/Rocky Hill sequence records a complex interplay of multiple melt-dominant bodies, which were established and renewed on rapid timescales. The rapid timescales for the development of melt-dominant bodies and the systematic tapping of magmas in the Kidnappers/Rocky Hill system imply that tectonics may have had a strong external control on the eruptions at Mangakino.</p>


2021 ◽  
Author(s):  
◽  
George Frederick Cooper

<p>This thesis research focuses on clast and crystal-specific studies to investigate the pre- and syn-eruptive magmatic processes of two supereruptions in the TVZ: the 1.21 Ma Ongatiti (>500 km3) and the 1.0 Ma Kidnappers (~1200 km3), together with the smaller (~200 km3) 1.0 Ma Rocky Hill eruption from the Mangakino Volcanic Centre (MVC).  Crystallisation histories determined through SIMS U-Pb dating of zircons reveal that the paired Kidnappers and Rocky Hill eruptions were products of a common magmatic system, which built over ~200 kyr, in the time break after the Ongatiti eruption. U-Pb age spectra from the Ongatiti show a protracted crystallisation history (over ~250 kyr), in which the majority of zircon crystallised ~100 kyr prior to eruption in a crystal mush. Zircons then ascended with melt during accumulation of the final erupted magma body in the shallow crust. Zircons remained stable in the melt dominant body but underwent little further crystallisation. Zircons from all three systems record common geochemical processes governed by the fractionating assemblage (predominantly plagioclase and amphibole). In particular, the MREE/HREE ratios and Sr concentrations of zircons from the Ongatiti record imply two contrasting source regions governed by different proportions of crystallising amphibole.  The in-situ major and trace element chemistry of glass shards and crystals from the Kidnappers fall deposit reveal that magma within the Kidnappers was stored in three discrete bodies, which were systematically tapped during the early stages of eruption. Temperature and pressure (T-P) estimates from amphibole and Fe-Ti oxide equilibria from each magma type are similar and therefore the three magma bodies were adjacent, not vertically stacked, in the crust. Amphibole model T-P estimates range from 770 to 840 °C and 90 to 170 MPa corresponding to pre-eruptive storage depths of ~4.0-6.5 km. The systematic evacuation of the three independent magma bodies implies that there was tectonic triggering and linkage of eruptions. The termination of fall deposition and onset of the overlying ignimbrite emplacement marks the point of widespread caldera collapse and the catastrophic evacuation of a wider variety of melt during the Kidnappers eruption.  Pumice compositions from the Kidnappers ignimbrite fall into three groups, two of which (KI-1 and KI-2) can be matched to bodies tapped during the fall phase of the eruption, with the addition of a further discrete batch of lower SiO2 (KI-3) magma. Core-rim textural and chemical variations in major crystal phases (plagioclase, amphibole and orthopyroxene) suggest each compositional group was sourced from a common mush but underwent a unique magmatic history during the development of melt-dominant bodies in the final stages prior to eruption. The field relationships and distinctive appearance of the Rocky Hill ignimbrite (~200 km3 DRE) and the underlying Kidnappers ignimbrite suggests that the two deposits are from distinct eruption events. However, major and trace element chemistry of matrix glass, coupled with the textural and chemical signatures of crystals suggests the magma erupted during the Rocky Hill was generated from the same source or mush zone as the Kidnappers. The two largest melt-dominant bodies (KI-1 and KI-2) within the Kidnappers were renewed, underwent mixing and incorporation of marginal material to form two magma types (RH-1 and RH-2) in the time break prior to the Rocky Hill eruption.  Fe-Mg interdiffusion timescales in orthopyroxenes from the Kidnappers and Rocky Hill deposits suggest the establishment of the final melt-dominant bodies, through extraction of melt and crystals from a common mush, occurred within 1000 years, and peaked within centuries of each eruption. In addition, one discrete batch of Kidnappers melt has evidence for interaction with a lesser evolved melt within 50 yrs prior to eruption. This rejuvenation event was not the eruption trigger but may have primed the magma for eruption. The difference in timescales from common zones from both the Kidnappers and Rocky Hill orthopyroxene, recording the same processes reveal the time break between the two eruptions was ~20-40 years. This work highlights the rapidity of rejuvenation and renewal of the melt-dominant bodies within the Kidnappers/Rocky Hill magmatic system.  The textural and in-situ compositional signatures of crystals from the Ongatiti ignimbrite imply the final erupted magma body was assembled from a thermally and chemically zoned mush, which extended to the base of the quartzofeldspathic crust (~15km). The mush was close to water saturation and was dominated by amphibole crystallisation. Melt and crystals (including the majority of zircons) were extracted from the mush and ascended to 4-6 km depths during the development of a crystal-rich (20-30%), but melt-dominant body. Significant crystallisation of plagioclase (and lesser proportions of orthopyroxene and amphibole) occurred in an event involving the gradual heating and/or increase of water in the rhyolite, from a broadly andesitic underplated magma. Homogeneous crystal rim and matrix glass compositions imply the final erupted volume of magma was effectively mixed through convection. Eu/Eu* values of whole-rock and matrix glass suggest little crystal-melt separation occurred in the melt-dominant magma body prior to eruption.  This work has implications for understanding the generation, storage and eruption of large-scale silicic magma systems. The Ongatiti ignimbrite does not represent either an erupted mush, or a stratified magma chamber, suggesting an alternative model for the development of eruptible magma within large-scale silicic systems. The Kidnappers/Rocky Hill sequence records a complex interplay of multiple melt-dominant bodies, which were established and renewed on rapid timescales. The rapid timescales for the development of melt-dominant bodies and the systematic tapping of magmas in the Kidnappers/Rocky Hill system imply that tectonics may have had a strong external control on the eruptions at Mangakino.</p>


2021 ◽  
Author(s):  
◽  
Tadiwos Chernet

<p>The Taupo Pumice Formation is a product of the Taupo eruption of about 1800a, and consists of three phreatomagmatic ash deposits, two plinian pumice deposits and a major low-aspect ratio and low grade (unwelded) ignimbrite which covered most part of the central North Island of New Zealand. The vent area for the eruption is located at Horomatangi Reefs in Lake Taupo. Lithics in the phreatoplinian ash deposits are negligible in quantity, but the plinian pumice deposits contain 5-10% lithics by volume in most near-vent sections. Lithics in the plinian pumice deposits are dominantly banded and spherulitic rhyolite with minor welded tuff, dacite and andesite. The ground layer which forms the base of the ignimbrite unit consists of dominantly lithics and crystals and is formed by the gravitational sedimentation of the 'heavies' from the strongly fluidized head of the pyroclastic flow. Lithic blocks in the ground layer are dominantly banded and spherulitic phenocryst-poor rhyolite, welded tuff with minor dacite and andesite. Near-vent exposures of the ground layer contain boulders upto 2 m in diameter. Friable blocks of hydrothermally altered rhyolite, welded tuff and lake sediments are found fractured but are preserved intact after transportation. This shows that the fluid/pyroclastic particle mixture provided enough support to carry such blocks upto a distance of 10 km from the vent. The rhyolite blocks are subdivided into hypersthene rhyolite, hypersthene-hornblende rhyolite and biotite-bearing rhyolite on the basis of the dominant ferromagnesian phenocryst assamblage. Hypersthene is the dominant ferromagnesian phenocryst in most of the rhyolite blocks in the ground layer and forms the major ferromagnesian crystal of the Taupo Sub-group tephra. The rhyolite blocks have similar whole rock chemistry to the Taupo Sub-group tephra and are probably derived from lava extrusions associated with the tephra eruptions from the Taupo Volcanic Centre in the last 10 ka. Older rhyolite domes and flows in the area are probably represented by the intensely hydrothermally altered rhyolite blocks in the ground layer. The dacite blocks contain hypersthene and augite as a major ferromagnesian phenocryst. Whole rock major and trace element analyses shows that the dacite blocks are distinct from the Tauhara dacites and from the dacites of Tongariro Volcanic Centre. The occurrence of dacite inclusions in significant quantity in the Taupo Pumice Formation indicates the presence of other dacite flows near the vent area. Four types of andesite blocks; hornblende andesite, plagioclase-pyroxene andesite, pyroxene andesite and olivine andesite occur as lithic blocks in the ground layer. The andesites are petrographically distinct from those encountered in deep drillholes at Wairakei (Waiora Valley Andesites), and are different from the Rolles Peak andesite in having lower Sr content. The andesite blocks show similar major and trace element content to those from the Tongariro Volcanic Centre. The roundness of the andesite blocks indicates that the blocks were transported as alluvium or lahars in to the lake basin before being incorporated into the pyroclastic flow. Two types of welded ignimbrite blocks are described. The lithic-crystal rich ignimbrite is correlated with a post-Whakamaru Group Ignimbrite (ca. 100 ka ignimbrite erupted from Taupo Volcanic Centre) which crops out to the north of Lake Taupo. The crystal rich ignimbrite is tentatively correlated with the Whakamaru Group Ignimbrites. The lake sediment boulders, pumiceous mudstone and siltstone in the ground layer probably correlate to the Huka Group sediments or younger Holocene sediments in the lake basin. A comparative mineral chemistry study of the lithic blocks was done. A change in chemistry of individual mineral species was found to accompany the variation in wholerock major element constituents in the different types of lithics. The large quantity of lithic blocks in the ground layer suggests extensive vent widening at the begining of the ignimbrite eruption. A simple model of flaring and collapse of the vent area caused by the down ward movement of the fragmentation surface is presented to explain the origin of the lithic blocks in the ground layer. The lithics in the Taupo Pumice Formation are therfore produced by the disruption of the country rock around the vent during the explosion and primary xenoliths from depths of magma generation were not found. Stratigraphic relations suggest that the most important depth of incorporation of lithics is within the post-Whakamaru Group Ignimbrite volcanics and volcaniclastic sedimentary units.</p>


2021 ◽  
Author(s):  
◽  
Tadiwos Chernet

<p>The Taupo Pumice Formation is a product of the Taupo eruption of about 1800a, and consists of three phreatomagmatic ash deposits, two plinian pumice deposits and a major low-aspect ratio and low grade (unwelded) ignimbrite which covered most part of the central North Island of New Zealand. The vent area for the eruption is located at Horomatangi Reefs in Lake Taupo. Lithics in the phreatoplinian ash deposits are negligible in quantity, but the plinian pumice deposits contain 5-10% lithics by volume in most near-vent sections. Lithics in the plinian pumice deposits are dominantly banded and spherulitic rhyolite with minor welded tuff, dacite and andesite. The ground layer which forms the base of the ignimbrite unit consists of dominantly lithics and crystals and is formed by the gravitational sedimentation of the 'heavies' from the strongly fluidized head of the pyroclastic flow. Lithic blocks in the ground layer are dominantly banded and spherulitic phenocryst-poor rhyolite, welded tuff with minor dacite and andesite. Near-vent exposures of the ground layer contain boulders upto 2 m in diameter. Friable blocks of hydrothermally altered rhyolite, welded tuff and lake sediments are found fractured but are preserved intact after transportation. This shows that the fluid/pyroclastic particle mixture provided enough support to carry such blocks upto a distance of 10 km from the vent. The rhyolite blocks are subdivided into hypersthene rhyolite, hypersthene-hornblende rhyolite and biotite-bearing rhyolite on the basis of the dominant ferromagnesian phenocryst assamblage. Hypersthene is the dominant ferromagnesian phenocryst in most of the rhyolite blocks in the ground layer and forms the major ferromagnesian crystal of the Taupo Sub-group tephra. The rhyolite blocks have similar whole rock chemistry to the Taupo Sub-group tephra and are probably derived from lava extrusions associated with the tephra eruptions from the Taupo Volcanic Centre in the last 10 ka. Older rhyolite domes and flows in the area are probably represented by the intensely hydrothermally altered rhyolite blocks in the ground layer. The dacite blocks contain hypersthene and augite as a major ferromagnesian phenocryst. Whole rock major and trace element analyses shows that the dacite blocks are distinct from the Tauhara dacites and from the dacites of Tongariro Volcanic Centre. The occurrence of dacite inclusions in significant quantity in the Taupo Pumice Formation indicates the presence of other dacite flows near the vent area. Four types of andesite blocks; hornblende andesite, plagioclase-pyroxene andesite, pyroxene andesite and olivine andesite occur as lithic blocks in the ground layer. The andesites are petrographically distinct from those encountered in deep drillholes at Wairakei (Waiora Valley Andesites), and are different from the Rolles Peak andesite in having lower Sr content. The andesite blocks show similar major and trace element content to those from the Tongariro Volcanic Centre. The roundness of the andesite blocks indicates that the blocks were transported as alluvium or lahars in to the lake basin before being incorporated into the pyroclastic flow. Two types of welded ignimbrite blocks are described. The lithic-crystal rich ignimbrite is correlated with a post-Whakamaru Group Ignimbrite (ca. 100 ka ignimbrite erupted from Taupo Volcanic Centre) which crops out to the north of Lake Taupo. The crystal rich ignimbrite is tentatively correlated with the Whakamaru Group Ignimbrites. The lake sediment boulders, pumiceous mudstone and siltstone in the ground layer probably correlate to the Huka Group sediments or younger Holocene sediments in the lake basin. A comparative mineral chemistry study of the lithic blocks was done. A change in chemistry of individual mineral species was found to accompany the variation in wholerock major element constituents in the different types of lithics. The large quantity of lithic blocks in the ground layer suggests extensive vent widening at the begining of the ignimbrite eruption. A simple model of flaring and collapse of the vent area caused by the down ward movement of the fragmentation surface is presented to explain the origin of the lithic blocks in the ground layer. The lithics in the Taupo Pumice Formation are therfore produced by the disruption of the country rock around the vent during the explosion and primary xenoliths from depths of magma generation were not found. Stratigraphic relations suggest that the most important depth of incorporation of lithics is within the post-Whakamaru Group Ignimbrite volcanics and volcaniclastic sedimentary units.</p>


2021 ◽  
Author(s):  
◽  
Stacey Maree Dravitzki

<p>This thesis explains the electrical conductivity structure of Mt. Ruapehu. To identify hydrothermal or volcanic components of the volcano, data from 25 magnetotelluric sites are analyzed. Data collected are first analyzed in the time domain prior to conversion into the frequency domain. Here, data are remote referenced, and the impedance tensors, tippers, apparent resistivity and phase values are calculated. These components are then analyzed to identify major features within the data. The new phase tensor ellipse method is applied to identify influential features and determine the dimensionality of data. This analysis indicates where it is appropriate to apply 1 or 2 dimensional inversion schemes. Dimensionality analysis led to 1-D modelling of the determinant impedance at each site; and limited 2-D profiles across the Tongariro Volcanic Centre boundaries. These models are used to create a simple 3-D structural model of the volcano that is then forward modelled. The results of the 3-D forward modelling indicate that the dominating features of the volcano's electrical structure have been identified in the previous models. Crater Lake is the only possible hydrothermal system on Mt. Ruapehu identified in this study. It is also very unlikely that any large coherent bodies of magma exist in the near surface. However, a second thin conductor laying somewhere between 10 and 30 km deep beneath the eastern flank may contain 13% melt and is the probable driving heat force beneath the volcano. The structure of Mt. Ruapehu can be split into seven layers. A resistive surface layer (100 ohm m) of young volcanic debris within the Tongariro Volcanic Centre that is up to 500 m thick near the crater.  A conductive layer (10 - 30 ohm m) of wet, fractured and altered volcanic debris underlaying the younger debris throughout the Tongariro Volcanic Centre.  A layer of Tertiary sediment under the Tongariro Volcanic Centre that extends to the south and west. This layer is electrically indistinguishable from the previous layer and extends to approximately sea level. A resistive layer (400 ohm m), and consistent with greywacke basement covers the entire field area.  A second conductive layer (20 ohm m) is identified under the eastern flank of the volcano somewhere between the depths of 10 and 30 km. This layer is likely to be the heat and magma source driving the volcanic activity.  A surrounding resistive layer extends beyond and below the second conductive layer mentioned above. This surrounding layer is electrically similar to the greywacke above.  A very high resistivity layer (7000 ohm m) is identified below 80 km deep, and may be associated with the land/sea boundary or subduction zone to the east.</p>


2021 ◽  
Author(s):  
◽  
Stacey Maree Dravitzki

<p>This thesis explains the electrical conductivity structure of Mt. Ruapehu. To identify hydrothermal or volcanic components of the volcano, data from 25 magnetotelluric sites are analyzed. Data collected are first analyzed in the time domain prior to conversion into the frequency domain. Here, data are remote referenced, and the impedance tensors, tippers, apparent resistivity and phase values are calculated. These components are then analyzed to identify major features within the data. The new phase tensor ellipse method is applied to identify influential features and determine the dimensionality of data. This analysis indicates where it is appropriate to apply 1 or 2 dimensional inversion schemes. Dimensionality analysis led to 1-D modelling of the determinant impedance at each site; and limited 2-D profiles across the Tongariro Volcanic Centre boundaries. These models are used to create a simple 3-D structural model of the volcano that is then forward modelled. The results of the 3-D forward modelling indicate that the dominating features of the volcano's electrical structure have been identified in the previous models. Crater Lake is the only possible hydrothermal system on Mt. Ruapehu identified in this study. It is also very unlikely that any large coherent bodies of magma exist in the near surface. However, a second thin conductor laying somewhere between 10 and 30 km deep beneath the eastern flank may contain 13% melt and is the probable driving heat force beneath the volcano. The structure of Mt. Ruapehu can be split into seven layers. A resistive surface layer (100 ohm m) of young volcanic debris within the Tongariro Volcanic Centre that is up to 500 m thick near the crater.  A conductive layer (10 - 30 ohm m) of wet, fractured and altered volcanic debris underlaying the younger debris throughout the Tongariro Volcanic Centre.  A layer of Tertiary sediment under the Tongariro Volcanic Centre that extends to the south and west. This layer is electrically indistinguishable from the previous layer and extends to approximately sea level. A resistive layer (400 ohm m), and consistent with greywacke basement covers the entire field area.  A second conductive layer (20 ohm m) is identified under the eastern flank of the volcano somewhere between the depths of 10 and 30 km. This layer is likely to be the heat and magma source driving the volcanic activity.  A surrounding resistive layer extends beyond and below the second conductive layer mentioned above. This surrounding layer is electrically similar to the greywacke above.  A very high resistivity layer (7000 ohm m) is identified below 80 km deep, and may be associated with the land/sea boundary or subduction zone to the east.</p>


2021 ◽  
Author(s):  
◽  
David Alaric Manning

<p>This thesis has produced the compilation of a complete tephrostratigraphic record of the eastern Bay of Plenty, New Zealand. About fifty Late Pleistocene tephras (i.e. those older than the Rotoiti eruption), ranging in age from c. 600 to 50 ka, are recorded in a terrestrial sequence of loess and paleosols in the eastern Bay of Plenty. Tephra correlations are based on the distinctive physical characteristics of the airfall beds and confirmed by microprobe analysis of glass shards ("fingerprinting"). Chemical analysis of hornblendes and titanomagnetites is used as a supplementary correlation tool where the tephras are too weathered to retain glass. The eastern bay of Plenty deposits are divided into seven subgroups with their boundaries marked either by major tephras or by significant changes in the paleo-climate indicator deposits such as loess and paleosols. These subgroups, and their estimated age ranges, are: Age control on the eastern Bay of Plenty tephras has been obtained by fitting the paleoclimatic information inferred from field observations to the Low Latitude Stack (LLS) and SPECMAP oxygen isotope curves, with correlations to a few well dated eruptives providing key time planes within this record; in particular, the Mamaku Ignimbrite (correlates to the Kutarere Tephra), and the Kaingaroa (Kaingaroa), Matahina (Matahina) and Rangitaiki (Kohioawa) Ignimbrites. Tentative correlations of several eastern Bay of Plenty tephras to the western, coastal central, and Southeast-central Bay of Plenty areas (Tauranga Matata cliffs and Reporoa, respectively) have been achieved. Three additional subgroups are proposed: the Welcome Bay (with at least 6 tephras) in the west, the Ohinekoao (14 tephras) in the coastal central, and the Reihana (13 tephras) in the southeast-central Bay of Plenty; all of which overlap in time with the eastern Bay of Plenty stratigraphy. The tephras recorded in the Bay of plenty have been used to estimate the ages of formation and uplift rates for many of the landforms that are observed throughout the region. A tectonic regime of subsidence in the west towards Tauranga, block faulting on either side of the subsiding Whakatane Graben in the central Bay of Plenty, and further large scale block faulting towards the far eastern margin of the Bay of Plenty has been proposed. Activity at the Okataina Volcanic Centre is now thought to have initiated at or before c. 370 ka, with the eruption of the Paerata Tephra. This tephra has a distribution pattern consistent with an Okataina source, and contains abundant cummingtonite, which is a signature mineral within tephras from the Okataina Volcanic Centre during the late Quaternary time period. However, the much older, but less well understood, Reeves-A and Wilson Tephras - both with estimated ages of c. 0.5 Ma - also contain cummingtonite, which indicates that activity may have been initiation at a much earlier time, or that a volcanic centre other than Okataina has produced cummingtonite. Activity in the Rotorua Volcanic Centre prior to the eruption of the Mamaku Ignimbrite is also indicated, as is activity at the Reporoa Volcanic Centre prior to the Kaingaroa Ignimbrite eruption.</p>


2021 ◽  
Author(s):  
◽  
David Alaric Manning

<p>This thesis has produced the compilation of a complete tephrostratigraphic record of the eastern Bay of Plenty, New Zealand. About fifty Late Pleistocene tephras (i.e. those older than the Rotoiti eruption), ranging in age from c. 600 to 50 ka, are recorded in a terrestrial sequence of loess and paleosols in the eastern Bay of Plenty. Tephra correlations are based on the distinctive physical characteristics of the airfall beds and confirmed by microprobe analysis of glass shards ("fingerprinting"). Chemical analysis of hornblendes and titanomagnetites is used as a supplementary correlation tool where the tephras are too weathered to retain glass. The eastern bay of Plenty deposits are divided into seven subgroups with their boundaries marked either by major tephras or by significant changes in the paleo-climate indicator deposits such as loess and paleosols. These subgroups, and their estimated age ranges, are: Age control on the eastern Bay of Plenty tephras has been obtained by fitting the paleoclimatic information inferred from field observations to the Low Latitude Stack (LLS) and SPECMAP oxygen isotope curves, with correlations to a few well dated eruptives providing key time planes within this record; in particular, the Mamaku Ignimbrite (correlates to the Kutarere Tephra), and the Kaingaroa (Kaingaroa), Matahina (Matahina) and Rangitaiki (Kohioawa) Ignimbrites. Tentative correlations of several eastern Bay of Plenty tephras to the western, coastal central, and Southeast-central Bay of Plenty areas (Tauranga Matata cliffs and Reporoa, respectively) have been achieved. Three additional subgroups are proposed: the Welcome Bay (with at least 6 tephras) in the west, the Ohinekoao (14 tephras) in the coastal central, and the Reihana (13 tephras) in the southeast-central Bay of Plenty; all of which overlap in time with the eastern Bay of Plenty stratigraphy. The tephras recorded in the Bay of plenty have been used to estimate the ages of formation and uplift rates for many of the landforms that are observed throughout the region. A tectonic regime of subsidence in the west towards Tauranga, block faulting on either side of the subsiding Whakatane Graben in the central Bay of Plenty, and further large scale block faulting towards the far eastern margin of the Bay of Plenty has been proposed. Activity at the Okataina Volcanic Centre is now thought to have initiated at or before c. 370 ka, with the eruption of the Paerata Tephra. This tephra has a distribution pattern consistent with an Okataina source, and contains abundant cummingtonite, which is a signature mineral within tephras from the Okataina Volcanic Centre during the late Quaternary time period. However, the much older, but less well understood, Reeves-A and Wilson Tephras - both with estimated ages of c. 0.5 Ma - also contain cummingtonite, which indicates that activity may have been initiation at a much earlier time, or that a volcanic centre other than Okataina has produced cummingtonite. Activity in the Rotorua Volcanic Centre prior to the eruption of the Mamaku Ignimbrite is also indicated, as is activity at the Reporoa Volcanic Centre prior to the Kaingaroa Ignimbrite eruption.</p>


Sign in / Sign up

Export Citation Format

Share Document