Microseismicity and P–wave tomography of the central Alpine Fault, New Zealand

2016 ◽  
Vol 59 (4) ◽  
pp. 483-495 ◽  
Author(s):  
J Feenstra ◽  
C Thurber ◽  
J Townend ◽  
S Roecker ◽  
S Bannister ◽  
...  
2021 ◽  
Author(s):  
V Lay ◽  
S Buske ◽  
SB Bodenburg ◽  
John Townend ◽  
R Kellett ◽  
...  

No description supplied


2021 ◽  
Author(s):  
◽  
Konstantinos Michailos

<p>This thesis documents a detailed examination of the seismic activity and characteristics of crustal deformation along the central Alpine Fault, a major obliquely convergent plate-boundary fault. Paleoseismic evidence has established that the Alpine Fault produces large to great (M7−8) earthquakes every 250−300 years, in a quasi-periodic manner, with the last surface-rupturing earthquake occurring in 1717. This renders the fault late in its typical earthquake cycle, posing substantial seismic risk to southern and central New Zealand. Understanding the seismic and tectonic character of this fault may yield information of both societal and scientific significance regarding seismic hazard and late-interseismic processes leading up to a large earthquake. However, the central Alpine Fault is currently seismically quiescent when compared to adjacent regions, and therefore requires detailed, long-duration observations to study seismotectonic processes. The work in this thesis addresses the need for a greater understanding of along-strike variations in seismic character of the Alpine Fault ahead of an anticipated large earthquake.  To achieve observations with high spatial and temporal resolution across the length of the central Alpine Fault, I use 8.5 years of continuous seismic data from the Southern Alps Microearthquake Borehole Array (SAMBA), and data from four other temporary seismic networks and five local GeoNet permanent sites. Incorporating all of these temporary and permanent seismic sites provides us with a dense composite network of seismometers. Without such a dense network, homogeneous examination of the characteristics of low-magnitude seismicity near the Alpine Fault would be impossible.  Using this dataset, I have constructed the most extensive microearthquake catalog for the central Alpine Fault region to date, containing 9,111 earthquakes and covering the time between late 2008 and early 2017. To construct this catalog I created an objective workflow to ensure catalog uniformity. Overall, 7,719 earthquakes were successfully relocated with location uncertainties generally ≤ 0.5 km in both the horizontal and vertical directions. The majority of the earthquakes were found to occur southeast of the Alpine Fault (i.e. in the hanging-wall). I observed a lack of seismicity beneath Aoraki/Mount Cook that has previously been shown to be associated with locally high uplift rates (6–10 mm/yr) and high geothermal gradients (∼60◦C/km). Seismogenic cut-off depths were observed to significantly vary along the strike of the Alpine Fault, ranging from 8 km beneath the highest topography to 20 km in the adjacent areas.  To quantify the scale of the seismic deformation, a new local magnitude scale was also derived, corrected for geometric spreading, attenuation and site terms based on individually calculated GeoNet moment magnitude (Mw) values. Earthquake local magnitudes range between ML –1.2 and 4.6 and the catalog is complete above ML 1.1.  To examine the stress regime near the central Alpine Fault, I built a new data set of 845 focal mechanisms from earthquakes in our catalog. This was achieved by manually determining P wave arrival polarity picks from all earthquakes larger than ML 1.5. In order to determine the orientations and characteristics of the stress parameters, I grouped these focal mechanisms and performed stress inversion calculations that provided an average maximum horizontal compressive stress orientation, SHmax, of 121±11◦ , which is uniform within uncertainty along the length of the central Southern Alps. I observed an average angle of 65◦ between the SHmax and the strike of the Alpine Fault, which is consistent with results from similar previous studies in the northern and southern sections of the Alpine Fault. This implies that the Alpine Fault is misoriented for reactivation, in the prevailing stress field.  Using a 1-D steady-state thermal structure model constrained by seismicity and thermochronology data, I investigated the crustal thermal structure and vertical kinematics of the central Southern Alps orogen. The short-term seismicity data and longer-term thermochronology data impose complementary constraints on the model. I observed a large variation in exhumation rate estimates (1–8 mm/yr) along the length of the Alpine Fault, with maximum calculated values observed near Aoraki/Mount Cook. I calculated the temperature at the brittle-ductile transition zone, which ranges from 440 to 457◦C in the different models considered. This temperature is slightly hotter than expected for crust composed by quartz-rich rocks, but consistent with the presence of feldspar-rich mafic rocks in parts of the crust.</p>


2020 ◽  
Author(s):  
Vera Lay ◽  
Stefan Buske ◽  
Sascha Barbara Bodenburg ◽  
Franz Kleine ◽  
John Townend ◽  
...  

&lt;p&gt;The Alpine Fault along the West Coast of the South Island (New Zealand) is a major plate boundary that is expected to rupture in the next 50 years, likely as a magnitude 8 earthquake. The Deep Fault Drilling Project (DFDP) aims to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. &amp;#160;&lt;/p&gt;&lt;p&gt;Here we present results from a 3D seismic survey around the DFDP-2 drill site in the Whataroa Valley where the drillhole penetrated almost down to the fault surface. Within the glacial valley, we collected 3D seismic data to constrain valley structures that were obscured in previous 2D seismic data. The new data consist of a 3D extended vertical seismic profiling (VSP) survey using three-component receivers and a fibre optic cable in the DFDP-2B borehole as well as a variety of receivers at the surface.&lt;/p&gt;&lt;p&gt;The data set enables us to derive a reliable 3D P-wave velocity model by first-arrival travel time tomography. We identify a 100-460 m thick sediment layer (average velocity 2200&amp;#177;400 m/s) above the basement (average velocity 4200&amp;#177;500 m/s). Particularly on the western valley side, a region of high velocities steeply rises to the surface and mimics the topography. We interpret this to be the infilled flank of the glacial valley that has been eroded into the basement. In general, the 3D structures implied by the velocity model on the upthrown (Pacific Plate) side of the Alpine Fault correlate well with the surface topography and borehole findings.&lt;/p&gt;&lt;p&gt;A reliable velocity model is not only valuable by itself but it is also required as input for prestack depth migration (PSDM). We performed PSDM with a part of the 3D data set to derive a structural image of the subsurface within the Whataroa Valley. The top of the basement identified in the P-wave velocity model coincides well with reflectors in the migrated images so that we can analyse the geometry of the basement in detail.&lt;/p&gt;


2021 ◽  
Author(s):  
◽  
Konstantinos Michailos

<p>This thesis documents a detailed examination of the seismic activity and characteristics of crustal deformation along the central Alpine Fault, a major obliquely convergent plate-boundary fault. Paleoseismic evidence has established that the Alpine Fault produces large to great (M7−8) earthquakes every 250−300 years, in a quasi-periodic manner, with the last surface-rupturing earthquake occurring in 1717. This renders the fault late in its typical earthquake cycle, posing substantial seismic risk to southern and central New Zealand. Understanding the seismic and tectonic character of this fault may yield information of both societal and scientific significance regarding seismic hazard and late-interseismic processes leading up to a large earthquake. However, the central Alpine Fault is currently seismically quiescent when compared to adjacent regions, and therefore requires detailed, long-duration observations to study seismotectonic processes. The work in this thesis addresses the need for a greater understanding of along-strike variations in seismic character of the Alpine Fault ahead of an anticipated large earthquake.  To achieve observations with high spatial and temporal resolution across the length of the central Alpine Fault, I use 8.5 years of continuous seismic data from the Southern Alps Microearthquake Borehole Array (SAMBA), and data from four other temporary seismic networks and five local GeoNet permanent sites. Incorporating all of these temporary and permanent seismic sites provides us with a dense composite network of seismometers. Without such a dense network, homogeneous examination of the characteristics of low-magnitude seismicity near the Alpine Fault would be impossible.  Using this dataset, I have constructed the most extensive microearthquake catalog for the central Alpine Fault region to date, containing 9,111 earthquakes and covering the time between late 2008 and early 2017. To construct this catalog I created an objective workflow to ensure catalog uniformity. Overall, 7,719 earthquakes were successfully relocated with location uncertainties generally ≤ 0.5 km in both the horizontal and vertical directions. The majority of the earthquakes were found to occur southeast of the Alpine Fault (i.e. in the hanging-wall). I observed a lack of seismicity beneath Aoraki/Mount Cook that has previously been shown to be associated with locally high uplift rates (6–10 mm/yr) and high geothermal gradients (∼60◦C/km). Seismogenic cut-off depths were observed to significantly vary along the strike of the Alpine Fault, ranging from 8 km beneath the highest topography to 20 km in the adjacent areas.  To quantify the scale of the seismic deformation, a new local magnitude scale was also derived, corrected for geometric spreading, attenuation and site terms based on individually calculated GeoNet moment magnitude (Mw) values. Earthquake local magnitudes range between ML –1.2 and 4.6 and the catalog is complete above ML 1.1.  To examine the stress regime near the central Alpine Fault, I built a new data set of 845 focal mechanisms from earthquakes in our catalog. This was achieved by manually determining P wave arrival polarity picks from all earthquakes larger than ML 1.5. In order to determine the orientations and characteristics of the stress parameters, I grouped these focal mechanisms and performed stress inversion calculations that provided an average maximum horizontal compressive stress orientation, SHmax, of 121±11◦ , which is uniform within uncertainty along the length of the central Southern Alps. I observed an average angle of 65◦ between the SHmax and the strike of the Alpine Fault, which is consistent with results from similar previous studies in the northern and southern sections of the Alpine Fault. This implies that the Alpine Fault is misoriented for reactivation, in the prevailing stress field.  Using a 1-D steady-state thermal structure model constrained by seismicity and thermochronology data, I investigated the crustal thermal structure and vertical kinematics of the central Southern Alps orogen. The short-term seismicity data and longer-term thermochronology data impose complementary constraints on the model. I observed a large variation in exhumation rate estimates (1–8 mm/yr) along the length of the Alpine Fault, with maximum calculated values observed near Aoraki/Mount Cook. I calculated the temperature at the brittle-ductile transition zone, which ranges from 440 to 457◦C in the different models considered. This temperature is slightly hotter than expected for crust composed by quartz-rich rocks, but consistent with the presence of feldspar-rich mafic rocks in parts of the crust.</p>


2021 ◽  
Author(s):  
Vera Lay ◽  
Stefan Buske ◽  
Franz Kleine ◽  
John Townend ◽  
Richard Kellett ◽  
...  

&lt;p&gt;The Alpine Fault at the West Coast of the South Island (New Zealand) is a major plate boundary that is expected to rupture in the next 50 years, likely as a magnitude 8 earthquake. The Deep Fault Drilling Project (DFDP) aimed to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. Here we present results from a seismic survey around the DFDP-2 drill site in the Whataroa Valley where the drillhole almost reached the fault plane. This unique 3D seismic survey includes several 2D lines and a 3D array at the surface as well as borehole recordings. Within the borehole, the unique option to compare two measurement systems is used: conventional three-component borehole geophones and a fibre optic cable (heterodyne Distributed Vibration Sensing system (hDVS)). Both systems show coherent signals but only the hDVS system allowed a recording along the complete length of the borehole.&lt;/p&gt;&lt;p&gt;Despite the challenging conditions for seismic imaging within a glacial valley filled with sediments and steeply dipping valley flanks, several structures related to the valley itself as well as the tectonic fault system are imaged. The pre-processing of the seismic data also includes wavefield separation for the zero-offset borehole data. Seismic images are obtained by prestack depth migration approaches.&lt;/p&gt;&lt;p&gt;Within the glacial valley, particularly steep valley flanks are imaged directly and correlate well with results from the P-wave velocity model obtained by first arrival travel-time tomography. Additionally, a glacially over-deepened trough with nearly horizontally layered sediments is identified about 0.5 km south of the DFDP-2B borehole.&lt;/p&gt;&lt;p&gt;With regard to the expected Alpine fault zone, a set of several reflectors dipping 40-56&amp;#176; to the southeast are identified in a ~600 m wide zone between depths of 0.2 and 1.2 km that is interpreted to be the minimum extent of the damage zone. Different approaches image one distinct reflector dipping at 40&amp;#176;, which is interpreted to be the main Alpine Fault reflector. This reflector is only ~100 m ahead from the lower end of the borehole. At shallower depths (z&lt;0.5 km), additional reflectors are identified as fault segments and generally have steeper dips up to 56&amp;#176;. About 1 km south of the drill site, a major fault is identified at a depth of 0.1-0.5 km that might be caused by the regional tectonics interacting with local valley structures. A good correlation is observed among the separate seismic data sets and with geological results such as the borehole stratigraphy and the expected surface trace of the fault.&lt;/p&gt;&lt;p&gt;In conclusion, several structural details of the fault zone and its environment are seismically imaged and show the complexity of the Alpine Fault at the Whataroa Valley. Thus, a detailed seismic characterization clarifies the subsurface structures, which is crucial to understand the transpressive fault&amp;#8217;s tectonic processes.&lt;/p&gt;


2021 ◽  
Author(s):  
Calum Chamberlain ◽  
D Shelly ◽  
John Townend ◽  
Timothy Stern

We present the first evidence of low-frequency earthquakes (LFEs) associated with the deep extension of the transpressional Alpine Fault beneath the central Southern Alps of New Zealand. Our database comprises a temporally continuous 36 month-long catalog of 8760 LFEs within 14 families. To generate this catalog, we first identify 14 primary template LFEs within known periods of seismic tremor and use these templates to detect similar events in an iterative stacking and cross-correlation routine. The hypocentres of 12 of the 14 LFE families lie within 10 km of the inferred location of the Alpine Fault at depths of approximately 20-30 km, in a zone of high P-wave attenuation, low P-wave speeds, and high seismic reflectivity. The LFE catalog consists of persistent, discrete events punctuated by swarm-like bursts of activity associated with previously and newly identified tremor periods. The magnitudes of the LFEs range between ML - 0.8 and ML 1.8, with an average of M L 0.5. We find that the frequency-magnitude distribution of the LFE catalog both as a whole and within individual families is not consistent with a power law, but that individual families' frequency-amplitude distributions approximate an exponential relationship, suggestive of a characteristic length-scale of failure. We interpret this LFE activity to represent quasi-continuous slip on the deep extent of the Alpine Fault, with LFEs highlighting asperities within an otherwise steadily creeping region of the fault. © 2014. American Geophysical Union. All Rights Reserved.


2021 ◽  
Author(s):  
Calum Chamberlain ◽  
D Shelly ◽  
John Townend ◽  
Timothy Stern

We present the first evidence of low-frequency earthquakes (LFEs) associated with the deep extension of the transpressional Alpine Fault beneath the central Southern Alps of New Zealand. Our database comprises a temporally continuous 36 month-long catalog of 8760 LFEs within 14 families. To generate this catalog, we first identify 14 primary template LFEs within known periods of seismic tremor and use these templates to detect similar events in an iterative stacking and cross-correlation routine. The hypocentres of 12 of the 14 LFE families lie within 10 km of the inferred location of the Alpine Fault at depths of approximately 20-30 km, in a zone of high P-wave attenuation, low P-wave speeds, and high seismic reflectivity. The LFE catalog consists of persistent, discrete events punctuated by swarm-like bursts of activity associated with previously and newly identified tremor periods. The magnitudes of the LFEs range between ML - 0.8 and ML 1.8, with an average of M L 0.5. We find that the frequency-magnitude distribution of the LFE catalog both as a whole and within individual families is not consistent with a power law, but that individual families' frequency-amplitude distributions approximate an exponential relationship, suggestive of a characteristic length-scale of failure. We interpret this LFE activity to represent quasi-continuous slip on the deep extent of the Alpine Fault, with LFEs highlighting asperities within an otherwise steadily creeping region of the fault. © 2014. American Geophysical Union. All Rights Reserved.


Sign in / Sign up

Export Citation Format

Share Document