scholarly journals Seismic P  Wave Velocity Model From 3‐D Surface and Borehole Seismic Data at the Alpine Fault DFDP‐2 Drill Site (Whataroa, New Zealand)

2021 ◽  
Author(s):  
V Lay ◽  
S Buske ◽  
SB Bodenburg ◽  
John Townend ◽  
R Kellett ◽  
...  

No description supplied

2020 ◽  
Author(s):  
Vera Lay ◽  
Stefan Buske ◽  
Sascha Barbara Bodenburg ◽  
Franz Kleine ◽  
John Townend ◽  
...  

<p>The Alpine Fault along the West Coast of the South Island (New Zealand) is a major plate boundary that is expected to rupture in the next 50 years, likely as a magnitude 8 earthquake. The Deep Fault Drilling Project (DFDP) aims to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth.  </p><p>Here we present results from a 3D seismic survey around the DFDP-2 drill site in the Whataroa Valley where the drillhole penetrated almost down to the fault surface. Within the glacial valley, we collected 3D seismic data to constrain valley structures that were obscured in previous 2D seismic data. The new data consist of a 3D extended vertical seismic profiling (VSP) survey using three-component receivers and a fibre optic cable in the DFDP-2B borehole as well as a variety of receivers at the surface.</p><p>The data set enables us to derive a reliable 3D P-wave velocity model by first-arrival travel time tomography. We identify a 100-460 m thick sediment layer (average velocity 2200±400 m/s) above the basement (average velocity 4200±500 m/s). Particularly on the western valley side, a region of high velocities steeply rises to the surface and mimics the topography. We interpret this to be the infilled flank of the glacial valley that has been eroded into the basement. In general, the 3D structures implied by the velocity model on the upthrown (Pacific Plate) side of the Alpine Fault correlate well with the surface topography and borehole findings.</p><p>A reliable velocity model is not only valuable by itself but it is also required as input for prestack depth migration (PSDM). We performed PSDM with a part of the 3D data set to derive a structural image of the subsurface within the Whataroa Valley. The top of the basement identified in the P-wave velocity model coincides well with reflectors in the migrated images so that we can analyse the geometry of the basement in detail.</p>


2021 ◽  
Author(s):  
Vera Lay ◽  
Stefan Buske ◽  
Franz Kleine ◽  
John Townend ◽  
Richard Kellett ◽  
...  

<p>The Alpine Fault at the West Coast of the South Island (New Zealand) is a major plate boundary that is expected to rupture in the next 50 years, likely as a magnitude 8 earthquake. The Deep Fault Drilling Project (DFDP) aimed to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. Here we present results from a seismic survey around the DFDP-2 drill site in the Whataroa Valley where the drillhole almost reached the fault plane. This unique 3D seismic survey includes several 2D lines and a 3D array at the surface as well as borehole recordings. Within the borehole, the unique option to compare two measurement systems is used: conventional three-component borehole geophones and a fibre optic cable (heterodyne Distributed Vibration Sensing system (hDVS)). Both systems show coherent signals but only the hDVS system allowed a recording along the complete length of the borehole.</p><p>Despite the challenging conditions for seismic imaging within a glacial valley filled with sediments and steeply dipping valley flanks, several structures related to the valley itself as well as the tectonic fault system are imaged. The pre-processing of the seismic data also includes wavefield separation for the zero-offset borehole data. Seismic images are obtained by prestack depth migration approaches.</p><p>Within the glacial valley, particularly steep valley flanks are imaged directly and correlate well with results from the P-wave velocity model obtained by first arrival travel-time tomography. Additionally, a glacially over-deepened trough with nearly horizontally layered sediments is identified about 0.5 km south of the DFDP-2B borehole.</p><p>With regard to the expected Alpine fault zone, a set of several reflectors dipping 40-56° to the southeast are identified in a ~600 m wide zone between depths of 0.2 and 1.2 km that is interpreted to be the minimum extent of the damage zone. Different approaches image one distinct reflector dipping at 40°, which is interpreted to be the main Alpine Fault reflector. This reflector is only ~100 m ahead from the lower end of the borehole. At shallower depths (z<0.5 km), additional reflectors are identified as fault segments and generally have steeper dips up to 56°. About 1 km south of the drill site, a major fault is identified at a depth of 0.1-0.5 km that might be caused by the regional tectonics interacting with local valley structures. A good correlation is observed among the separate seismic data sets and with geological results such as the borehole stratigraphy and the expected surface trace of the fault.</p><p>In conclusion, several structural details of the fault zone and its environment are seismically imaged and show the complexity of the Alpine Fault at the Whataroa Valley. Thus, a detailed seismic characterization clarifies the subsurface structures, which is crucial to understand the transpressive fault’s tectonic processes.</p>


1984 ◽  
Vol 74 (4) ◽  
pp. 1263-1274
Author(s):  
Lawrence H. Jaksha ◽  
David H. Evans

Abstract A velocity model of the crust in northwestern New Mexico has been constructed from an interpretation of direct, refracted, and reflected seismic waves. The model suggests a sedimentary section about 3 km thick with an average P-wave velocity of 3.6 km/sec. The crystalline upper crust is 28 km thick and has a P-wave velocity of 6.1 km/sec. The lower crust below the Conrad discontinuity has an average P-wave velocity of about 7.0 km/sec and a thickness near 17 km. Some evidence suggests that velocity in both the upper and lower crust increases with depth. The P-wave velocity in the uppermost mantle is 7.95 ± 0.15 km/sec. The total crustal thickness near Farmington, New Mexico, is about 48 km (datum = 1.6 km above sea level), and there is evidence for crustal thinning to the southeast.


2021 ◽  
Author(s):  
Sheng Chen ◽  
Qingcai Zeng ◽  
Xiujiao Wang ◽  
Qing Yang ◽  
Chunmeng Dai ◽  
...  

Abstract Practices of marine shale gas exploration and development in south China have proved that formation overpressure is the main controlling factor of shale gas enrichment and an indicator of good preservation condition. Accurate prediction of formation pressure before drilling is necessary for drilling safety and important for sweet spots predicting and horizontal wells deploying. However, the existing prediction methods of formation pore pressures all have defects, the prediction accuracy unsatisfactory for shale gas development. By means of rock mechanics analysis and related formulas, we derived a formula for calculating formation pore pressures. Through regional rock physical analysis, we determined and optimized the relevant parameters in the formula, and established a new formation pressure prediction model considering P-wave velocity, S-wave velocity and density. Based on regional exploration wells and 3D seismic data, we carried out pre-stack seismic inversion to obtain high-precision P-wave velocity, S-wave velocity and density data volumes. We utilized the new formation pressure prediction model to predict the pressure and the spatial distribution of overpressure sweet spots. Then, we applied the measured pressure data of three new wells to verify the predicted formation pressure by seismic data. The result shows that the new method has a higher accuracy. This method is qualified for safe drilling and prediction of overpressure sweet spots for shale gas development, so it is worthy of promotion.


Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


2019 ◽  
Vol 133 ◽  
pp. 01011
Author(s):  
Jakub Kokowski ◽  
Zbigniew Szreder ◽  
Elżbieta Pilecka

In the study, the determining of the reference velocity of the P-wave in coal seams used in seismic profiling to assess increases and decreases in relative stresses at large depths has been presented. The seismic profiling method proposed by Dubinski in 1989 covers a range of depth up to 970 m. At present, coal seams exploitation in Polish coal mines is conducted at greater depths, even exceeding 1200 m, which creates the necessity for a new reference velocity model. The study presents an empirical mathematical model of the change of the P-wave velocity in coal seams in the geological conditions of the Jastrzebie coal mine. A power model analogous to the Dubinski’s one was elaborated with new constants. The calculations included the results from 35 measurements of seismic profiling carried out in various coal seams of the Jastrzebie mine at depths from 640 to 1200 m. The results obtained cause changes in the result of calculations of seismic anomalies. Future validation of the proposed model with larger data set will be required.


2019 ◽  
Vol 38 (10) ◽  
pp. 762-769
Author(s):  
Patrick Connolly

Reflectivities of elastic properties can be expressed as a sum of the reflectivities of P-wave velocity, S-wave velocity, and density, as can the amplitude-variation-with-offset (AVO) parameters, intercept, gradient, and curvature. This common format allows elastic property reflectivities to be expressed as a sum of AVO parameters. Most AVO studies are conducted using a two-term approximation, so it is helpful to reduce the three-term expressions for elastic reflectivities to two by assuming a relationship between P-wave velocity and density. Reduced to two AVO components, elastic property reflectivities can be represented as vectors on intercept-gradient crossplots. Normalizing the lengths of the vectors allows them to serve as basis vectors such that the position of any point in intercept-gradient space can be inferred directly from changes in elastic properties. This provides a direct link between properties commonly used in rock physics and attributes that can be measured from seismic data. The theory is best exploited by constructing new seismic data sets from combinations of intercept and gradient data at various projection angles. Elastic property reflectivity theory can be transferred to the impedance domain to aid in the analysis of well data to help inform the choice of projection angles. Because of the effects of gradient measurement errors, seismic projection angles are unlikely to be the same as theoretical angles or angles derived from well-log analysis, so seismic data will need to be scanned through a range of angles to find the optimum.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R271-R293 ◽  
Author(s):  
Nuno V. da Silva ◽  
Gang Yao ◽  
Michael Warner

Full-waveform inversion deals with estimating physical properties of the earth’s subsurface by matching simulated to recorded seismic data. Intrinsic attenuation in the medium leads to the dispersion of propagating waves and the absorption of energy — media with this type of rheology are not perfectly elastic. Accounting for that effect is necessary to simulate wave propagation in realistic geologic media, leading to the need to estimate intrinsic attenuation from the seismic data. That increases the complexity of the constitutive laws leading to additional issues related to the ill-posed nature of the inverse problem. In particular, the joint estimation of several physical properties increases the null space of the parameter space, leading to a larger domain of ambiguity and increasing the number of different models that can equally well explain the data. We have evaluated a method for the joint inversion of velocity and intrinsic attenuation using semiglobal inversion; this combines quantum particle-swarm optimization for the estimation of the intrinsic attenuation with nested gradient-descent iterations for the estimation of the P-wave velocity. This approach takes advantage of the fact that some physical properties, and in particular the intrinsic attenuation, can be represented using a reduced basis, substantially decreasing the dimension of the search space. We determine the feasibility of the method and its robustness to ambiguity with 2D synthetic examples. The 3D inversion of a field data set for a geologic medium with transversely isotropic anisotropy in velocity indicates the feasibility of the method for inverting large-scale real seismic data and improving the data fitting. The principal benefits of the semiglobal multiparameter inversion are the recovery of the intrinsic attenuation from the data and the recovery of the true undispersed infinite-frequency P-wave velocity, while mitigating ambiguity between the estimated parameters.


Sign in / Sign up

Export Citation Format

Share Document