Spectrochemical Investigations of Preferential Solvation. Part 3. Extension of the Khossravi-Connors-Skwierczynski Two-Step Competitive Solvation Model to Fluorescence Emission Behavior of Polycyclic Aromatic Hydrocarbon Solvent Polarity Probes Dissolved in Binary Solvent Mixtures

1995 ◽  
Vol 30 (2) ◽  
pp. 79-93 ◽  
Author(s):  
William E. Acree ◽  
Sheryl A. Tucker ◽  
Denise C. Wilkins ◽  
Jason M. Griffin
1988 ◽  
Vol 42 (8) ◽  
pp. 1525-1531 ◽  
Author(s):  
Riaz Waris ◽  
Michael A. Rembert ◽  
David M. Sellers ◽  
William E. Acree ◽  
Kenneth W. Street ◽  
...  

Fluorescence properties of benzo[ghi]perylene (BPe) and ovalene (Ov) dissolved in 25 solvents of varying polarity are reported. Measurements indicate that emission intensities depend on solvent polarity. The BPe and Ov solvent polarity scales are defined as the ratio of the fluorescence emission intensities of bands I and III of the vibronic spectra. Benzo[ghi]perylene and ovalene solute probes enable fluorescence measurements to be made in spectral regions less prone to solvent inner filtering and other artifacts which have hampered the use of pyrene (Py) as a polarity probe molecule.


1989 ◽  
Vol 43 (5) ◽  
pp. 845-850 ◽  
Author(s):  
Riaz Waris ◽  
Kenneth W. Street ◽  
William E. Acree ◽  
John C. Fetzer

Fluorescence properties of benzo[e]pyrene, benzo[a)pyrene, dibenzo[a,ejpyrene (naphtho[1,2,3,4def]chrysene), 1-chloropyrene, tribenzo[de, kl,rst]pentaphene, dinaphtho[2,1,8,7defg,2′,1,8′,7'ijkl]pentaphene, benz [rst]anthra[9,1,2cde]pentaphene, and dibenzo[fg,ij]phenanthro[2,1,10,9,8,7pqrstuv]pentaphene dissolved in solvents of varying polarity are reported. Measurements indicate that emission intensities of benzo[e)pyrene (BePy) and dibenzophenanthropentaphene (DBPP) depend on solvent polarity. Two new polarity scales are defined, BePy = I/IV and DBPP = I/II, on the basis of the ratio of the fluorescence intensities of select vibronic bands. For fluorescence spectra for the remaining six compounds studied, either the spectra were not clearly resolvable or the calculated intensity ratios remained nearly constant, irrespective of solvent polarity.


1993 ◽  
Vol 47 (6) ◽  
pp. 715-722 ◽  
Author(s):  
Sheryl A. Tucker ◽  
William E. Acree ◽  
John C. Fetzer ◽  
Ronald G. Harvey ◽  
Mary J. Tanga ◽  
...  

To better assess the applicability of nitromethane as a selective quenching agent for alternant versus nonalternant polycyclic aromatic hydrocarbons in HPLC, TLC, and HPTLC analysis, we measured the effect that it has on the fluorescence emission behavior of 96 different polycyclic aromatic hydrocarbons dissolved in binary toluene/acetonitrile solvent mixtures. Results of these measurements revealed that the “selective quenching” rule is obeyed for the vast majority of PAHs, with the coronene derivatives being the only major exceptions. Fluorescence emission spectra are also reported for benzo[g]chrysene, naphtho[2,3g]chrysene, 4 H-benzo[c]cyclopenta[mno]chrysene, dibenzo[ghi,mno]fluoranthene (commonly called corannulene), rubicene, diacenaphtho[l,2j:l‘,2'l]fluoranthene, 10-methyl-benzo[b]fluoranthene, 3-methoxybenzo[k]fluoranthene, and 3-hydroxybenzo[k]fluoranthene in organic nonelectrolyte solvents of varying polarity. Calculated emission intensity ratios failed to vary systematically with solvent polarity, and all nine of the aforementioned solutes were thus classified as nonprobe molecules.


The Analyst ◽  
1989 ◽  
Vol 114 (2) ◽  
pp. 195 ◽  
Author(s):  
Riaz Waris ◽  
Michael A. Rembert ◽  
David M. Sellers ◽  
William E. Acree ◽  
Kenneth W. Street ◽  
...  

1993 ◽  
Vol 47 (8) ◽  
pp. 1171-1174 ◽  
Author(s):  
William E. Acree ◽  
Denise C. Wilkins ◽  
Sheryl A. Tucker

A spectrofluorometric method is developed to examine preferential solvation of a probe molecule dissolved in binary solvent mixtures. The method assumes that the solvational sphere around every fluorophore is solvated by only one type of solvent component and that each solvated fluorophore contributes to the measured emission intensity. Expressions derived from the model are illustrated with the use of observed fluorescence emission behavior of 3,4-dihydrobenzo[ghilperylene dissolved in binary n-heptane + 1,4-dioxane and dibutyl ether + acetonitrile solvent mixtures, which were measured as part of the present study.


2021 ◽  
Author(s):  
Ioanna Deligkiozi ◽  
Raffaello Papadakis

In this work three molecules exhibiting dual sensing solvatochromic behaviors are examined in the context of solvation in binary solvent mixtures (BSMs). The compounds studied involve two functional groups with high responsiveness to solvent polarity namely pentacyanoferrate(II) (PC) and azo groups. Two of these compounds are [2]rotaxanes involving alpha- or beta- cyclodextrin (CyD) and the third is their CyD-free precursor. The dual solvatochromic behavior of these compounds is investigated in water/ethlylene glycol (EG) mixtures and their dual solvatochromic responses are assessed in terms of the intensity of solvatochromism and the extent of preferential solvation. To achieve this the linear solvation model by Kamlet, Abboud and Taft [J. Organomet. Chem. 1983, 48, 2877–2887] and the two-phase model of solvation by Bagchi and coworkers [J. Phys. Chem. 1991, 95, 3311–3314] are employed. The influence of the presence or lack of CyD (alpha- or beta-) on these dual solvatochromic sensors is analyzed.


1992 ◽  
Vol 46 (11) ◽  
pp. 1630-1635 ◽  
Author(s):  
Sheryl A. Tucker ◽  
Hardjanti Darmodjo ◽  
William E. Acree ◽  
Maximilian Zander ◽  
Erich C. Meister ◽  
...  

Fluorescence emission spectra are reported for naphth[2′l′8′7′: 4,10,5]anthra[l,9,8cdef]cinnoline, benzo[lmn][3,8]phenanthroline (also called 2,7-diazapyrene), benz[4,10]anthra[l,9,8cdef]cinnoline, naphtho[8,1,2hij]pyreno[9,10,ldef]phthalazine, acenaphtho[l,2b]pyridine, benzo[a]phenazine, indeno[l,2,3ij][2,7]naphthyridine, and indeno-[l,2,3ij]isoquinoline dissolved in organic nonelectrolyte solvents of varying polarity and acidity. Results of these measurements indicate that naphth[2′,1′,8′,7′:4,10,5]anthra[l,9,8cdef]cinnoline exhibits some signs of probe character as evidenced by changing emission intensity ratios; however, numerical values did not vary systematically with solvent polarity. The effect of nitromethane and 1,2,4-trimethoxybenzene as selective quenching agents on both the unprotonated and protonated PANHs was also examined. Nitromethane was found to quench fluorescence emission of roughly two-thirds of the alternant unprotonated PANHs studied to date. Emission intensities of the protonated PANHs remained essentially constant and were not affected by nitromethane. 1,2,4-Trimethoxybenzene, on the other hand, quenched the fluorescence emission of several unprotonated and all protonated PANHs examined.


Sign in / Sign up

Export Citation Format

Share Document